Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 1661, 2023 03 25.
Article in English | MEDLINE | ID: mdl-36966155

ABSTRACT

Deubiquitinating enzymes are key regulators in the ubiquitin system and an emerging class of drug targets. These proteases disassemble polyubiquitin chains and many deubiquitinases show selectivity for specific polyubiquitin linkages. However, most biochemical insights originate from studies of single diubiquitin linkages in isolation, whereas in cells all linkages coexist. To better mimick this diubiquitin substrate competition, we develop a multiplexed mass spectrometry-based deubiquitinase assay that can probe all ubiquitin linkage types simultaneously to quantify deubiquitinase activity in the presence of all potential diubiquitin substrates. For this, all eight native diubiquitins are generated and each linkage type is designed with a distinct molecular weight by incorporating neutron-encoded amino acids. Overall, 22 deubiquitinases are profiled, providing a three-dimensional overview of deubiquitinase linkage selectivity over time and enzyme concentration.


Subject(s)
Deubiquitinating Enzymes , Polyubiquitin , Ubiquitination , Polyubiquitin/metabolism , Deubiquitinating Enzymes/metabolism , Ubiquitin/metabolism , Ubiquitins/metabolism
2.
Chempluschem ; 87(12): e202200372, 2022 12.
Article in English | MEDLINE | ID: mdl-36457160

ABSTRACT

Despite fluorescent quenching with graphene oxide (GO) having shown great success in various applications - bioluminescent quenching has not yet been demonstrated using GO as a quencher. To explore the ability of GO to quench bioluminescence, we used Gaussia luciferase (Gluc) as a donor and GO as a quencher and demonstrated its application in sensing of two target analytes, HIV-1 DNA and IFN-γ. We demonstrated that the incubation of Gluc conjugated HIV-1 and IFN-γ oligonucleotide probes with GO provided for monitoring of probe-target interactions based on bioluminescence measurement in a solution phase sensing system. The limits of detection obtained for IFN-γ and HIV-1 DNA detection were 17 nM and 7.59 nM, respectively. Both sensing systems showed selectivity toward the target analyte. The detection of IFN-γ in saliva matrix was demonstrated. The use of GO as a quencher provides for high sensitivity while maintaining the selectivity of designed probes to their respective targets. The use of GO as a quencher provides for an easy assay design and low cost, environmentally friendly reporter.


Subject(s)
Graphite , HIV-1 , Luminescent Proteins , Luminescent Measurements
3.
J Am Chem Soc ; 144(45): 20582-20589, 2022 11 16.
Article in English | MEDLINE | ID: mdl-36318515

ABSTRACT

We describe the development and optimization of a methodology to prepare peptides and proteins modified on the arginine residue with an adenosine-di-phosphate-ribosyl (ADPr) group. Our method comprises reacting an ornithine containing polypeptide on-resin with an α-linked anomeric isothiourea N-riboside, ensuing installment of a phosphomonoester at the 5'-hydroxyl of the ribosyl moiety followed by the conversion into the adenosine diphosphate. We use this method to obtain four regioisomers of ADP-ribosylated ubiquitin (UbADPr), each modified with an ADP-ribosyl residue on a different arginine position within the ubiquitin (Ub) protein (Arg42, Arg54, Arg72, and Arg74) as the first reported examples of fully synthetic arginine-linked ADPr-modified proteins. We show the chemically prepared Arg-linked UbADPr to be accepted and processed by Legionella enzymes and compare the entire suite of four Arg-linked UbADPr regioisomers in a variety of biochemical experiments, allowing us to profile the activity and selectivity of Legionella pneumophila ligase and hydrolase enzymes.


Subject(s)
Adenosine Diphosphate Ribose , Arginine , Adenosine Diphosphate Ribose/chemistry , Arginine/metabolism , ADP-Ribosylation , Ubiquitin/chemistry , Ubiquitinated Proteins/metabolism , Peptides/chemistry
4.
Anal Chem ; 92(11): 7393-7398, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32410446

ABSTRACT

Although bioluminescent molecular beacons designed around resonance quenchers have shown higher signal-to-noise ratios and increased sensitivity compared with fluorescent beacon systems, bioluminescence quenching is still comparatively inefficient. A more elegant solution to inefficient quenching can be realized by designing a competitive inhibitor that is structurally very similar to the native substrate, resulting in essentially complete substrate exclusion. In this work, we designed a conjugated anti-interferon-γ (IFN-γ) molecular aptamer beacon (MAB) attached to a bioluminescent protein, Gaussia luciferase (GLuc), and an inhibitor molecule with a similar structure to the native substrate coelenterazine. To prove that a MAB can be more sensitive and have a better signal-to-noise ratio, a bioluminescence-based assay was developed against IFN-γ and provided an optimized, physiologically relevant detection limit of 1.0 nM. We believe that this inhibitor approach may provide a simple alternative strategy to standard resonance quenching in the development of high-performance molecular beacon-based biosensing systems.


Subject(s)
Aptamers, Nucleotide/chemistry , Biosensing Techniques , Enzyme Inhibitors/chemistry , Imidazoles/chemistry , Luciferases/chemistry , Luminescent Proteins/chemistry , Pyrazines/chemistry , Animals , Aptamers, Nucleotide/chemical synthesis , Copepoda/enzymology , Enzyme Inhibitors/pharmacology , Imidazoles/pharmacology , Luciferases/antagonists & inhibitors , Luciferases/metabolism , Luminescent Measurements , Luminescent Proteins/antagonists & inhibitors , Luminescent Proteins/metabolism , Models, Molecular , Molecular Structure , Pyrazines/pharmacology , Signal-To-Noise Ratio
5.
Small ; 15(35): e1902248, 2019 08.
Article in English | MEDLINE | ID: mdl-31313884

ABSTRACT

The ability to monitor types, concentrations, and activities of different biomolecules is essential to obtain information about the molecular processes within cells. Successful monitoring requires a sensitive and selective tool that can respond to these molecular changes. Molecular aptamer beacon (MAB) is a molecular imaging and detection tool that enables visualization of small or large molecules by combining the selectivity and sensitivity of molecular beacon and aptamer technologies. MAB design leverages structure switching and specific recognition to yield an optical on/off switch in the presence of the target. Various donor-quencher pairs such as fluorescent dyes, quantum dots, carbon-based materials, and metallic nanoparticles have been employed in the design of MABs. In this work, the diverse biomedical applications of MAB technology are focused on. Different conjugation strategies for the energy donor-acceptor pairs are addressed, and the overall sensitivities of each detection system are discussed. The future potential of this technology in the fields of biomedical research and diagnostics is also highlighted.


Subject(s)
Aptamers, Nucleotide/chemistry , SELEX Aptamer Technique/methods , Fluorescent Dyes/chemistry , Molecular Imaging , Signal Transduction , Spectrometry, Fluorescence/methods
6.
J Ophthalmol ; 2018: 1891249, 2018.
Article in English | MEDLINE | ID: mdl-30116626

ABSTRACT

PURPOSE: To assess aqueous humor concentration of prostaglandin E2 (PGE2) after capsulotomy creation using a femtosecond laser (FLAC) in patients pretreated with short-term topical ketorolac versus patients without pretreatment. METHODS: This prospective study comprised consecutive patients scheduled to undergo cataract surgery using a femtosecond laser platform to perform only capsulotomies. An identical protocol for preoperative mydriasis was used for all the eyes included in the study, while aqueous humor was extracted from the anterior chamber of all patients immediately after the initial side port incision. ELISA was performed to quantify aqueous humor PGE2. The patients were divided into 2 groups; in group 1, the patients received short-term topical ketorolac preoperatively, while the patients in group 2 did not receive NSAID pretreatment. RESULTS: Twenty eyes of 20 patients were included in the study (10 eyes in each group). Mean concentration of aqueous humor PGE2 after FLAC was 392.16 ± 162.00 pg/ml and 622.63 ± 331.84 pg/ml for groups 1 and 2, respectively. A statistically significant difference in aqueous humor PGE2 concentration between the two groups (p < 0.05) was demonstrated, with the eyes that received ketorolac pretreatment demonstrating a lower concentration of PGE2. CONCLUSION: Short-term topical use of ketorolac prior to FLAC seems to prevent excessive release of PGE2 in the anterior chamber of the eyes that received NSAID pretreatment when compared to the eyes that did not receive NSAIDs preoperatively.

7.
Analyst ; 143(14): 3374-3381, 2018 Jul 09.
Article in English | MEDLINE | ID: mdl-29897056

ABSTRACT

Here we describe the design of a bioluminescent stem-loop probe for the sensitive detection of HIV-1 spliced RNA. In this study, we employed Gaussia luciferase (GLuc), a bioluminescent protein that has several advantages over other bioluminescent proteins, including smaller size, higher bioluminescent intensity, and chemical and thermal stability. GLuc was chemically conjugated to the DABCYL-modified stem-loop probe (SLP) and was purified with a 2-step process to remove unconjugated GLuc and SLP. The binding of the target RNA to the loop region of the SLP results in the open conformation separating the stem part of SLP. GLuc conjugated to the stem acts as a reporter that produces light by a chemical reaction upon adding its substrate, coelenterazine in the presence of the target, while DABCYL serves as a quencher of bioluminescence in the closed conformation of SLP in the absence of the target. The optimized GLuc based-SLP assay resulted in a signal-to-background ratio of 47, which is the highest reported with bioluminescent SLPs and is significantly higher compared to traditional fluorescence-based SLPs that yield low signal to background ratio. Moreover, the assay showed an excellent selectivity against a single and double mismatched nucleic acid target, low detection limit, and ability to detect spiked HIV-1 RNA in human serum matrix.


Subject(s)
HIV-1 , Luciferases/chemistry , Luminescent Proteins/chemistry , RNA, Viral/analysis , Animals , Copepoda/enzymology , Humans
8.
Bioconjug Chem ; 28(6): 1749-1757, 2017 06 21.
Article in English | MEDLINE | ID: mdl-28514139

ABSTRACT

Bioorthogonal conjugation eliminates the shortcomings of classical conjugation methods. The conjugation of antibodies to reporter proteins, such as bioluminescent protein, can be controlled with orthogonal conjugation methods. Here we report a bioluminescent immunoassay for the sensitive detection of interferon-γ (IFN-γ) that utilizes orthogonal conjugation of bioluminescent protein, Gaussia luciferase to anti-IFN-γ antibody. The IFN-γ is produced by the immune system and the detection of the IFN-γ is pivotal for the detection of persistent viral and bacterial infections. A bioorthogonal conjugation approach is used to conjugate an anti-IFN-γ antibody with a GLuc mutant containing the N-terminal tyrosine using formylbenzene diazonium hexafluorophosphate reagent (FBDP) in hydrophilic mild pH environment yielding high conjugation efficiency (60%). This reagent is shown to be specific for tyrosine (Tyr) residues. Therefore, conjugation through Tyr was orthogonal and not detrimental to the bioluminescence activity of GLuc. The immunoassay described in this paper is a sandwich type assay and involves a capture and a detection antibody. The assay was validated for its robustness, precision, accuracy, limit of detection, and recovery.


Subject(s)
Immunoassay/methods , Infections/diagnosis , Interferon-gamma/analysis , Animals , Antibodies , Enzyme-Linked Immunosorbent Assay/methods , Humans , Immunoassay/standards , Interferon-gamma/immunology , Limit of Detection , Luciferases , Luminescent Agents , Sensitivity and Specificity , Tyrosine
9.
Protein Expr Purif ; 132: 68-74, 2017 04.
Article in English | MEDLINE | ID: mdl-28108349

ABSTRACT

Marine luciferases are regularly employed as useful reporter molecules across a range of various applications. However, attempts to transition expression from their native eukaryotic environment into a more economical prokaryotic, i.e. bacterial, expression system often presents several challenges. Specifically, bacterial protein expression inherently lacks chaperone proteins to aid in the folding process, while Escherichia coli presents a reducing cytoplasmic environment in. These conditions contribute to the inhibition of proper folding of cysteine-rich proteins, leading to incorrect tertiary structure and ultimately inactive and potentially insoluble protein. Vargula luciferase (Vluc) is a cysteine-rich marine luciferase that exhibits glow-type bioluminescence through a reaction between its unique native substrate and molecular oxygen. Because most other commonly used bioluminescent proteins exhibit flash-type emission kinetics, this emission characteristic of Vluc is desirable for high-throughput applications where stability of emission is required for the duration of data collection. A truncated form of Vluc that retains considerable bioluminescence activity (55%) compared to the native full-length protein has been reported in the literature. However, expression and purification of this luciferase from bacterial systems has proven difficult. Herein, we demonstrate the expression and purification of a truncated form of Vluc from E. coli. This truncated Vluc (tVluc) was subsequently characterized in terms of both its biophysical and bioluminescence properties.


Subject(s)
Arthropod Proteins , Crustacea/genetics , Luciferases , Animals , Arthropod Proteins/biosynthesis , Arthropod Proteins/chemistry , Arthropod Proteins/genetics , Arthropod Proteins/isolation & purification , Crustacea/enzymology , Luciferases/biosynthesis , Luciferases/chemistry , Luciferases/genetics , Luciferases/isolation & purification , Protein Domains , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Solubility
10.
Sci Rep ; 6: 26814, 2016 06 08.
Article in English | MEDLINE | ID: mdl-27271118

ABSTRACT

Gaussia luciferase (Gluc)-with its many favorable traits such as small size, bright emission, and exceptional stability-has become a prominent reporter protein for a wide range of bioluminescence-based detection applications. The ten internal cysteine residues crucial to functional structure formation, however, make expression of high quantities of soluble protein in bacterial systems difficult. In addition to this challenge, the current lack of structural data further complicates the use of Gluc for in vitro applications, such as biosensors, or cellular delivery, both of which rely heavily on robust and reproducible bioconjugation techniques. While Gluc is already appreciably small for a luciferase, a reduction in size that still retains significant bioluminescent activity, in conjunction with a more reproducible bioorthogonal method of chemical modification and facile expression in bacteria, would be very beneficial in biosensor design and cellular transport studies. We have developed truncated variants of Gluc, which maintain attractive bioluminescent features, and have characterized their spectral and kinetic properties. These variants were purified in high quantities from a bacterial system. Additionally, a C-terminal linker has been incorporated into these variants that can be used for reliable, specific modification through tyrosine-based bioconjugation techniques, which leave the sensitive network of cysteine residues undisturbed.


Subject(s)
Copepoda/enzymology , Luciferases/chemistry , Luminescent Measurements , Amino Acid Sequence , Animals , Biosensing Techniques , Circular Dichroism , Escherichia coli , Genes, Reporter , Half-Life , Luciferases/analysis , Luciferases/genetics , Molecular Weight , Oxidation-Reduction , Protein Conformation , Protein Engineering , Protein Folding , Recombinant Proteins/analysis , Recombinant Proteins/chemistry , Sequence Deletion , Solubility , Spectrophotometry, Ultraviolet , Tyrosine/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...