Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Int J Pediatr Otorhinolaryngol ; 171: 111606, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37336020

ABSTRACT

OBJECTIVES: Our objective was to reinforce clinical knowledge of hearing impairment in KBG syndrome. KBG syndrome is a rare genetic disorder due to monoallelic pathogenic variations of ANKRD11.The typical phenotype includes facial dysmorphism, costal and spinal malformation and developmental delay. Hearing loss in KBG patients has been reported for many years, but no study has evaluated audiological phenotyping from a clinical and an anatomical point of view. METHODS: This French multicenter study included 32 KBG patients with retrospective collection of data on audiological features, ear imaging and genetic investigations. RESULTS: We identified a typical audiological profil in KBG syndrome: conductive (71%), bilateral (81%), mild to moderate (84%) and stable (69%) hearing loss, with some audiological heterogeneity. Among patients with an abnormality on CT imaging (55%), ossicular chain impairment (67%), fixation of the stapes footplate (33%) and inner-ear malformations (33%) were the most common abnormalities. CONCLUSION: We recommend a complete audiological and radiological evaluation and an ENT-follow up in all patients presenting with KBG Syndrome. Imaging evaluation is necessary to determine the nature of lesions in the middle and inner ear.


Subject(s)
Abnormalities, Multiple , Bone Diseases, Developmental , Deafness , Intellectual Disability , Tooth Abnormalities , Humans , Abnormalities, Multiple/genetics , Intellectual Disability/genetics , Bone Diseases, Developmental/genetics , Tooth Abnormalities/genetics , Facies , Retrospective Studies , Repressor Proteins/genetics , Phenotype
2.
Ultrasound Obstet Gynecol ; 60(6): 805-811, 2022 12.
Article in English | MEDLINE | ID: mdl-35943828

ABSTRACT

Pathogenic variants of collagen type IV alpha 1 and 2 (COL4A1/COL4A2) genes cause various phenotypic anomalies, including intracerebral hemorrhage and a wide spectrum of developmental anomalies. Only 20% of fetuses referred for COL4A1/COL4A2 molecular screening (fetuses with a suspected intracerebral hemorrhage) carry a pathogenic variant in these genes, raising questions regarding the causative anomaly in the remaining 80% of these fetuses. We examined, following termination of pregnancy or in-utero fetal death, a series of 113 unrelated fetuses referred for COL4A1/COL4A2 molecular screening, in which targeted sequencing was negative. Using exome sequencing data and a gene-based collapsing test, we searched for enrichment of rare qualifying variants in our fetal cohort in comparison to the Genome Aggregation Database (gnomAD) control cohort (n = 71 702). Qualifying variants in pyruvate dehydrogenase E1 subunit alpha 1 (PDHA1) were overrepresented in our cohort, reaching genome-wide significance (P = 2.11 × 10-7 ). Heterozygous PDHA1 loss-of-function variants were identified in three female fetuses. Among these three cases, we observed microcephaly, ventriculomegaly, germinolytic pseudocysts, agenesis/dysgenesis of the corpus callosum and white-matter anomalies that initially suggested cerebral hypoxic-ischemic and hemorrhagic lesions. However, a careful a-posteriori reanalysis of imaging and postmortem data showed that the observed lesions were also consistent with those observed in fetuses carrying PDHA1 pathogenic variants, strongly suggesting that these two phenotypes may overlap. Exome sequencing should therefore be performed in fetuses referred for COL4A1/COL4A2 molecular screening which are screen-negative, with particular attention paid to the PDHA1 gene. © 2022 International Society of Ultrasound in Obstetrics and Gynecology.


Subject(s)
Metabolic Diseases , Nervous System Malformations , Pregnancy , Female , Humans , Collagen Type IV/genetics , Mutation , Phenotype , Cerebral Hemorrhage , Corpus Callosum
4.
Clin Genet ; 93(6): 1172-1178, 2018 06.
Article in English | MEDLINE | ID: mdl-29460436

ABSTRACT

Marfanoid habitus (MH) combined with intellectual disability (ID) is a genetically and clinically heterogeneous group of overlapping disorders. We performed exome sequencing in 33 trios and 31 single probands to identify novel genes specific to MH-ID. After the search for variants in known disease-causing genes and non-disease-causing genes with classical approaches, we searched for variants in non-disease-causing genes whose pLI was above 0.9 (ExAC Consortium data), in which truncating variants were found in at least 3 unrelated patients. Only DLG4 gene met these criteria. Data from the literature and various databases also indicated its implication in ID. DLG4 encodes post-synaptic density protein 95 (PSD-95), a protein expressed in various tissues, including the brain. In neurons, PSD-95 is located at the post-synaptic density, and is associated with glutamatergic receptor signaling (NMDA and AMPA). PSD-95 probably participates in dendritogenesis. Two patients were heterozygous for de novo frameshift variants and one patient carried a a consensus splice site variant. Gene expression studies supported their pathogenicity through haploinsufficiency and loss-of-function. Patients exhibited mild-to-moderate ID, similar marfanoid features, including a long face, high-arched palate, long and thin fingers, pectus excavatum, scoliosis and ophthalmological manifestations (nystagmus or strabismus). Our study emphasizes the role of DLG4 as a novel post-synaptic-associated gene involved in syndromic ID associated with MH.


Subject(s)
Disks Large Homolog 4 Protein/genetics , Intellectual Disability/genetics , Marfan Syndrome/genetics , Mutation/genetics , Adolescent , Adult , Child , Cohort Studies , Female , Genetic Association Studies , Genome, Human , Humans , Male , Middle Aged , RNA, Messenger/genetics , RNA, Messenger/metabolism , Young Adult
6.
Clin Genet ; 92(3): 298-305, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28295206

ABSTRACT

Kabuki syndrome (KS-OMIM 147920) is a rare developmental disease characterized by the association of multiple congenital anomalies and intellectual disability. This study aimed to investigate intellectual performance in children with KS and link the performance to several clinical features and molecular data. We recruited 31 children with KMT2D mutations who were 6 to 16 years old. They all completed the Weschler Intelligence Scale for Children, fourth edition. We calculated all indexes: the Full Scale Intellectual Quotient (FSIQ), Verbal Comprehension Index (VCI), Perceptive Reasoning Index (PRI), Processing Speed Index (PSI), and Working Memory Index (WMI). In addition, molecular data and several clinical symptoms were studied. FSIQ and VCI scores were 10 points lower for patients with a truncating mutation than other types of mutations. In addition, scores for FSIQ, VCI and PRI were lower for children with visual impairment than normal vision. We also identified a discrepancy in indexes characterized by high WMI and VCI and low PRI and PSI. We emphasize the importance of early identification and intensive care of visual disorders in patients with KS and recommend individual assessment of intellectual profile.


Subject(s)
Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , DNA-Binding Proteins/genetics , Face/abnormalities , Genetic Association Studies , Hematologic Diseases/diagnosis , Hematologic Diseases/genetics , Mutation , Neoplasm Proteins/genetics , Phenotype , Vestibular Diseases/diagnosis , Vestibular Diseases/genetics , Adolescent , Alleles , Child , DNA Mutational Analysis , Female , Gene Order , Genetic Loci , Humans , Intelligence , Male , Neuropsychological Tests
7.
Clin Genet ; 89(5): 630-5, 2016 05.
Article in English | MEDLINE | ID: mdl-26582393

ABSTRACT

Microarray-based comparative genomic hybridization (aCGH) is commonly used in diagnosing patients with intellectual disability (ID) with or without congenital malformation. Because aCGH interrogates with the whole genome, there is a risk of being confronted with incidental findings (IF). In order to anticipate the ethical issues of IF with the generalization of new genome-wide analysis technologies, we questioned French clinicians and cytogeneticists about the situations they have faced regarding IF from aCGH. Sixty-five IF were reported. Forty corresponded to autosomal dominant diseases with incomplete penetrance, 7 to autosomal dominant diseases with complete penetrance, 14 to X-linked diseases, and 4 were heterozygotes for autosomal recessive diseases with a high prevalence of heterozygotes in the population. Therapeutic/preventive measures or genetic counselling could be argued for all cases except four. These four IF were intentionally not returned to the patients. Clinicians reported difficulties in returning the results in 29% of the cases, mainly when the question of IF had not been anticipated. Indeed, at the time of the investigation, only 48% of the clinicians used consents mentioning the risk of IF. With the emergence of new technologies, there is a need to report such national experiences; they show the importance of pre-test information on IF.


Subject(s)
Comparative Genomic Hybridization/methods , Genetic Counseling/ethics , Genetic Counseling/methods , Incidental Findings , Disclosure/ethics , Female , France , Genes, Dominant/genetics , Genes, Recessive/genetics , Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Genetic Diseases, X-Linked/diagnosis , Genetic Diseases, X-Linked/genetics , Humans , Male , Microarray Analysis/methods , Physician-Patient Relations/ethics , Retrospective Studies , Surveys and Questionnaires
8.
Clin Genet ; 89(3): 371-7, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26404489

ABSTRACT

Otopalatodigital spectrum disorders (OPDSD) include OPD syndromes types 1 and type 2 (OPD1, OPD2), Melnick-Needles syndrome (MNS), and frontometaphyseal dysplasia (FMD). These conditions are clinically characterized by variable skeletal dysplasia associated in males, with extra-skeletal features including brain malformations, cleft palate, cardiac anomalies, omphalocele and obstructive uropathy. Mutations in the FLNA gene have been reported in most FMD and OPD2 cases and in all instances of typical OPD1 and MNS. Here, we report a series of 10 fetuses and a neonatally deceased newborn displaying a multiple congenital anomalies syndrome suggestive of OPDSD and in whom we performed FLNA analysis. We found a global mutation rate of 44%. This series allows expanding the clinical and FLNA mutational spectrum in OPDSD. However, we emphasize difficulties to correctly discriminate OPDSD based on clinical criteria in fetuses due to the major overlap between these conditions. Molecular analyses may help pathologists to refine clinical diagnosis according to the type and the location of FLNA mutations. Discriminating the type of OPDSD is of importance in order to improve the genetic counseling to provide to families.


Subject(s)
Craniofacial Abnormalities/genetics , Fetus , Filamins/genetics , Hand Deformities, Congenital/genetics , Mutation , Osteochondrodysplasias/genetics , Phenotype , Craniofacial Abnormalities/diagnosis , Craniofacial Abnormalities/metabolism , DNA Mutational Analysis , Female , Hand Deformities, Congenital/diagnosis , Hand Deformities, Congenital/metabolism , Humans , Infant, Newborn , Male , Osteochondrodysplasias/diagnosis , Osteochondrodysplasias/metabolism , Pedigree
9.
Am J Med Genet A ; 167A(11): 2714-9, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26114937

ABSTRACT

The use of array-comparative genomic hybridization (array-CGH) in routine clinical work has allowed the identification of many new copy number variations (CNV). The 16p13.11 duplication has been implicated in various congenital anomalies and neurodevelopmental disorders, but it has also been identified in healthy individuals. We report a clinical observation of two brothers from related parents each carrying a homozygous 16p13.11 duplication. The propositus had mild intellectual disability and posterior urethral valves with chronic renal disease. His brother was considered a healthy child with only learning disabilities and poor academic performances. However, a routine medical examination at 25-years-old revealed a mild chronic renal disease and ureteropelvic junction obstruction. Furthermore, the father presented with a unilateral renal agenesis, thus it seemed that a "congenital anomalies of kidney and urinary tract" (CAKUT) phenotype segregated in this family. This may be related to the duplication, but we cannot exclude the involvement of additional genetic or non-genetic factors in the urological phenotype. Several cohort studies showed association between this chromosomal imbalance and different clinical manifestations, but rarely with CAKUT. The duplication reported here was similar to the larger one of 3.4 Mb previously described versus the more common of 1.6 Mb. It encompassed at least 11 known genes, including the five ohnologs previously identified. Our observation, in addition to expanding the clinical spectrum of the duplication provides further support to understanding the underlying pathogenic mechanism.


Subject(s)
Chromosome Duplication/genetics , Chromosomes, Human, Pair 16/genetics , Consanguinity , Intellectual Disability/genetics , Parents , Siblings , Urinary Tract/abnormalities , Adult , Comparative Genomic Hybridization , DNA Copy Number Variations , Female , Homozygote , Humans , Infant , Infant, Newborn , Male , Pedigree
SELECTION OF CITATIONS
SEARCH DETAIL
...