Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Lancet Neurol ; 23(5): 477-486, 2024 May.
Article in English | MEDLINE | ID: mdl-38631764

ABSTRACT

BACKGROUND: Facioscapulohumeral muscular dystrophy is a hereditary progressive myopathy caused by aberrant expression of the transcription factor DUX4 in skeletal muscle. No approved disease-modifying treatments are available for this disorder. We aimed to assess the safety and efficacy of losmapimod (a small molecule that inhibits p38α MAPK, a regulator of DUX4 expression, and p38ß MAPK) for the treatment of facioscapulohumeral muscular dystrophy. METHODS: We did a randomised, double-blind, placebo-controlled phase 2b trial at 17 neurology centres in Canada, France, Spain, and the USA. We included adults aged 18-65 years with type 1 facioscapulohumeral muscular dystrophy (ie, with loss of repression of DUX4 expression, as ascertained by genotyping), a Ricci clinical severity score of 2-4, and at least one skeletal muscle judged using MRI to be suitable for biopsy. Participants were randomly allocated (1:1) to either oral losmapimod (15 mg twice a day) or matching placebo for 48 weeks, via an interactive response technology system. The investigator, study staff, participants, sponsor, primary outcome assessors, and study monitor were masked to the treatment allocation until study closure. The primary endpoint was change from baseline to either week 16 or 36 in DUX4-driven gene expression in skeletal muscle biopsy samples, as measured by quantitative RT-PCR. The primary efficacy analysis was done in all participants who were randomly assigned and who had available data for assessment, according to the modified intention-to-treat principle. Safety and tolerability were assessed as secondary endpoints. This study is registered at ClinicalTrials.gov, number NCT04003974. The phase 2b trial is complete; an open-label extension is ongoing. FINDINGS: Between Aug 27, 2019, and Feb 27, 2020, 80 people were enrolled. 40 were randomly allocated to losmapimod and 40 to placebo. 54 (68%) participants were male and 26 (33%) were female, 70 (88%) were White, and mean age was 45·7 (SD 12·5) years. Least squares mean changes from baseline in DUX4-driven gene expression did not differ significantly between the losmapimod (0·83 [SE 0·61]) and placebo (0·40 [0·65]) groups (difference 0·43 [SE 0·56; 95% CI -1·04 to 1·89]; p=0·56). Losmapimod was well tolerated. 29 treatment-emergent adverse events (nine drug-related) were reported in the losmapimod group compared with 23 (two drug-related) in the placebo group. Two participants in the losmapimod group had serious adverse events that were deemed unrelated to losmapimod by the investigators (alcohol poisoning and suicide attempt; postoperative wound infection) compared with none in the placebo group. No treatment discontinuations due to adverse events occurred and no participants died during the study. INTERPRETATION: Although losmapimod did not significantly change DUX4-driven gene expression, it was associated with potential improvements in prespecified structural outcomes (muscle fat infiltration), functional outcomes (reachable workspace, a measure of shoulder girdle function), and patient-reported global impression of change compared with placebo. These findings have informed the design and choice of efficacy endpoints for a phase 3 study of losmapimod in adults with facioscapulohumeral muscular dystrophy. FUNDING: Fulcrum Therapeutics.


Subject(s)
Muscular Dystrophy, Facioscapulohumeral , Adult , Female , Humans , Male , Middle Aged , Cyclopropanes/adverse effects , Cyclopropanes/therapeutic use , Double-Blind Method , Pyridines/adverse effects , Pyridines/therapeutic use , Treatment Outcome
2.
Cancer Immunol Res ; 8(10): 1300-1310, 2020 10.
Article in English | MEDLINE | ID: mdl-32873605

ABSTRACT

The programmed cell death protein 1 receptor (PD-1) and programmed death ligand 1 (PD-L1) coinhibitory pathway suppresses T-cell-mediated immunity. We hypothesized that cotargeting of PD-1 and PD-L1 with a bispecific antibody molecule could provide an alternative therapeutic approach, with enhanced antitumor activity, compared with monospecific PD-1 and PD-L1 antibodies. Here, we describe LY3434172, a bispecific IgG1 mAb with ablated Fc immune effector function that targets both human PD-1 and PD-L1. LY3434172 fully inhibited the major inhibitory receptor-ligand interactions in the PD-1 pathway. LY3434172 enhanced functional activation of T cells in vitro compared with the parent anti-PD-1 and anti-PD-L1 antibody combination or respective monotherapies. In mouse tumor models reconstituted with human immune cells, LY3434172 therapy induced dramatic and potent antitumor activity compared with each parent antibody or their combination. Collectively, these results demonstrated the enhanced immunomodulatory (immune blockade) properties of LY3434172, which improved antitumor immune response in preclinical studies, thus supporting its evaluation as a novel bispecific cancer immunotherapy.


Subject(s)
Antibodies, Bispecific/pharmacology , B7-H1 Antigen/antagonists & inhibitors , Immunotherapy/methods , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Animals , Antibodies, Bispecific/immunology , B7-H1 Antigen/immunology , CHO Cells , Cricetulus , Female , Humans , Lymphocyte Activation , Mice , Mice, Inbred NOD , Mice, SCID , Molecular Targeted Therapy , Programmed Cell Death 1 Receptor/immunology , T-Lymphocytes/immunology , Xenograft Model Antitumor Assays
3.
Bioorg Med Chem Lett ; 25(17): 3488-94, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26212776

ABSTRACT

Synthesis and SAR studies of novel triazolobenzazepinones as gamma secretase modulators (GSMs) are presented in this communication. Starting from our azepinone leads, optimization studies toward improving central lowering of Aß42 led to the discovery of novel benzo-fused azepinones. Several benzazepinones were profiled in vivo and found to lower brain Aß42 levels in Sprague Dawley rats and transgenic APP-YAC mice in a dose-dependent manner after a single oral dose. Compound 34 was further progressed into a pilot study in our cisterna-magna-ported rhesus monkey model, where we observed robust lowering of CSF Aß42 levels.


Subject(s)
Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Amyloid Precursor Protein Secretases/metabolism , Animals , Drug Discovery , Macaca mulatta , Mice , Mice, Transgenic , Rats , Rats, Sprague-Dawley
4.
Bioorg Med Chem Lett ; 22(9): 3140-6, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22497762

ABSTRACT

Synthesis and SAR studies of novel aryl triazoles as gamma secretase modulators (GSMs) are presented in this communication. Starting from our aryl triazole leads, optimization studies were continued and the series progressed towards novel amides and lactams. Triazole 57 was identified as the most potent analog in this series, displaying single-digit nanomolar Aß42 IC(50) in cell-based assays and reduced affinity for the hERG channel.


Subject(s)
Amyloid Precursor Protein Secretases/metabolism , Trans-Activators/metabolism , Triazoles/pharmacology , Amides/chemistry , Amides/pharmacology , Amyloid beta-Peptides , Cell Line , Dose-Response Relationship, Drug , Humans , Inhibitory Concentration 50 , Lactams , Structure-Activity Relationship , Transcriptional Regulator ERG , Triazoles/chemistry
6.
J Biomol Screen ; 16(6): 588-602, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21521801

ABSTRACT

Phenotypic lead generation strategies seek to identify compounds that modulate complex, physiologically relevant systems, an approach that is complementary to traditional, target-directed strategies. Unlike gene-specific assays, phenotypic assays interrogate multiple molecular targets and signaling pathways in a target "agnostic" fashion, which may reveal novel functions for well-studied proteins and discover new pathways of therapeutic value. Significantly, existing compound libraries may not have sufficient chemical diversity to fully leverage a phenotypic strategy. To address this issue, Eli Lilly and Company launched the Phenotypic Drug Discovery Initiative (PD(2)), a model of open innovation whereby external research groups can submit compounds for testing in a panel of Lilly phenotypic assays. This communication describes the statistical validation, operations, and initial screening results from the first PD(2) assay panel. Analysis of PD(2) submissions indicates that chemical diversity from open source collaborations complements internal sources. Screening results for the first 4691 compounds submitted to PD(2) have confirmed hit rates from 1.6% to 10%, with the majority of active compounds exhibiting acceptable potency and selectivity. Phenotypic lead generation strategies, in conjunction with novel chemical diversity obtained via open-source initiatives such as PD(2), may provide a means to identify compounds that modulate biology by novel mechanisms and expand the innovation potential of drug discovery.


Subject(s)
Drug Discovery , Phenotype , Animals , Apolipoproteins E/metabolism , Cell Cycle/drug effects , Cell Differentiation/drug effects , Cell Line , Drug Evaluation, Preclinical , HeLa Cells , Humans , Insulin/metabolism , Insulin Secretion , Mice , Neovascularization, Physiologic/drug effects , Nocodazole/pharmacology , Osteoblasts/cytology , Osteoblasts/metabolism , Protein Kinase Inhibitors/pharmacology , Rats , Reproducibility of Results , Signal Transduction/drug effects , Tubulin Modulators/pharmacology , Wnt Proteins/metabolism
7.
Bioorg Med Chem Lett ; 20(7): 2279-82, 2010 Apr 01.
Article in English | MEDLINE | ID: mdl-20207146

ABSTRACT

The development of a novel series of purines as gamma-secretase modulators for potential use in the treatment of Alzheimer's disease is disclosed herein. Optimization of a previously disclosed pyrimidine series afforded a series of potent purine-based gamma-secretase modulators with 300- to 2000-fold in vitro selectivity over inhibition of Notch cleavage and that selectively reduces Alphabeta42 in an APP-YAC transgenic mouse model.


Subject(s)
Alzheimer Disease/drug therapy , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Peptides/antagonists & inhibitors , Peptide Fragments/antagonists & inhibitors , Purines/chemistry , Purines/therapeutic use , Amyloid Precursor Protein Secretases/genetics , Amyloid beta-Peptides/metabolism , Animals , Humans , Mice , Mice, Transgenic , Peptide Fragments/metabolism , Purines/pharmacology , Receptors, Notch/metabolism , Structure-Activity Relationship
8.
J Biomol Screen ; 14(4): 404-11, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19403923

ABSTRACT

c-Met is a receptor tyrosine kinase (RTK) with a critical role in many fundamental cellular processes, including cell proliferation and differentiation. Deregulated c-Met signaling has been implicated in both the initiation and progression of human cancers and therefore represents an attractive target for anticancer therapy. Monitoring the phosphorylation status of relevant tyrosine residues provides an important method of assessing c-Met kinase activity. This report describes a novel assay to monitor c-Met phosphorylation in cells using Amplified Luminescent Proximity Homogeneous Assay (AlphaScreen) technology. Using AlphaScreen, the authors were able to detect both global and site-specific phosphorylation of c-Met in transformed cell lines. Data obtained from the AlphaScreen assay were compared to data obtained from a high-content imaging (HCI) method developed in parallel to monitor c-Met phosphorylation at the single cell level. The AlphaScreen assay was miniaturized to a 384-well format with acceptable signal-to-background ratio (S/B) and Z' statistics and was employed to measure c-Met kinase activity in situ after treatment with potent c-Met-specific kinase inhibitors. The authors discuss the utility of quantifying endogenous cellular c-Met phosphorylation in lead optimization and how the modular design of the AlphaScreen assay allows its adaptation to measure cellular activity of other kinases.


Subject(s)
Biological Assay/methods , Imaging, Three-Dimensional/methods , Proto-Oncogene Proteins c-met/metabolism , Cell Count , Cell Line, Tumor , Humans , Indicators and Reagents , Phosphorylation , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...