Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Chem ; 13(1): 47-55, 2021 01.
Article in English | MEDLINE | ID: mdl-33353970

ABSTRACT

Polyether ionophores are complex natural products capable of transporting cations across biological membranes. Many polyether ionophores possess potent antimicrobial activity and a few selected compounds have the ability to target aggressive cancer cells. Nevertheless, ionophore function is believed to be associated with idiosyncratic cellular toxicity and, consequently, human clinical development has not been pursued. Here, we demonstrate that structurally novel polyether ionophores can be efficiently constructed by recycling components of highly abundant polyethers to afford analogues with enhanced antibacterial selectivity compared to a panel of natural polyether ionophores. We used classic degradation reactions of the natural polyethers lasalocid and monensin and combined the resulting fragments with building blocks provided by total synthesis, including halogen-functionalized tetronic acids as cation-binding groups. Our results suggest that structural optimization of polyether ionophores is possible and that this area represents a potential opportunity for future methodological innovation.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Ethers/chemistry , Ionophores/chemistry , Aldehydes/chemistry , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Cell Line , Cell Survival/drug effects , Crystallography, X-Ray , Furans/chemical synthesis , Furans/chemistry , Humans , Ionophores/chemical synthesis , Ionophores/pharmacology , Lasalocid/chemical synthesis , Lasalocid/chemistry , Molecular Conformation , Monensin/chemical synthesis , Monensin/chemistry , Oxidation-Reduction
2.
Antiviral Res ; 185: 104988, 2021 01.
Article in English | MEDLINE | ID: mdl-33248195

ABSTRACT

Pandemic spread of emerging human pathogenic viruses, such as the current SARS-CoV-2, poses both an immediate and future challenge to human health and society. Currently, effective treatment of infection with SARS-CoV-2 is limited and broad spectrum antiviral therapies to meet other emerging pandemics are absent leaving the World population largely unprotected. Here, we have identified distinct members of the family of polyether ionophore antibiotics with potent ability to inhibit SARS-CoV-2 replication and cytopathogenicity in cells. Several compounds from this class displayed more than 100-fold selectivity between viral-induced cytopathogenicity and inhibition of cell viability, however the compound X-206 displayed >500-fold selectivity and was furthermore able to inhibit viral replication even at sub-nM levels. The antiviral mechanism of the polyether ionophores is currently not understood in detail. We demonstrate, e.g. through unbiased bioactivity profiling, that their effects on the host cells differ from those of cationic amphiphiles such as hydroxychloroquine. Collectively, our data suggest that polyether ionophore antibiotics should be subject to further investigations as potential broad-spectrum antiviral agents.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Ethers, Cyclic/pharmacology , Ionophores/pharmacology , SARS-CoV-2/drug effects , Animals , Chlorocebus aethiops , Humans , Vero Cells , Virus Replication/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...