Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Biotechnol Bioeng ; 119(10): 2784-2793, 2022 10.
Article in English | MEDLINE | ID: mdl-35822551

ABSTRACT

Virus-like particles (VLPs) induce strong humoral and cellular responses and have formed the basis of some currently licensed vaccines. Here, we present the method used for the production of R21, a VLP-based anti-sporozoite malaria vaccine, under current Clinical Good Manufacturing Practice regulations (cGMP). Previous preclinical studies in BALB/c mice showed that R21 produced almost complete protection against sporozoite challenge with transgenic Plasmodium berghei parasites. Here, we have modified the preclinical production process to enable the production of sufficient quantities of highly pure, clinical-grade material for use in human clinical trials. The R21 construct was re-engineered to include a C-tag to allow affinity-based separation from the major contaminant alcohol oxidase 1 (AOX 1, ~74 kDa). To our knowledge, this is the first use of C-tag technology to purify a VLP vaccine candidate for use in human clinical trials. The R21 vaccine has shown high-level efficacy in an African Phase IIb trial, and multiple clinical trials are underway to assess the safety and efficacy of the vaccine. Our findings support the future use of C-tag platform technologies to enable cGMP-compliant biomanufacturing of high purity yeast-expressed VLP-based vaccines for early phase clinical trials when clinical grade material is required in smaller quantities in a quick time frame.


Subject(s)
Malaria Vaccines , Malaria , Saccharomycetales , Vaccines, Virus-Like Particle , Viral Vaccines , Animals , Hepatitis B Surface Antigens/genetics , Hepatitis B Surface Antigens/metabolism , Humans , Malaria/prevention & control , Malaria Vaccines/genetics , Malaria Vaccines/metabolism , Mice , Mice, Inbred BALB C , Pichia/genetics
2.
Front Immunol ; 12: 694759, 2021.
Article in English | MEDLINE | ID: mdl-34335606

ABSTRACT

Background: Transmission blocking vaccines targeting the sexual-stages of the malaria parasite could play a major role to achieve elimination and eradication of malaria. The Plasmodium falciparum Pfs25 protein (Pfs25) is the most clinically advanced candidate sexual-stage antigen. IMX313, a complement inhibitor C4b-binding protein that forms heptamers with the antigen fused to it, improve antibody responses. This is the first time that viral vectors have been used to induce antibodies in humans against an antigen that is expressed only in the mosquito vector. Methods: Clinical trial looking at safety and immunogenicity of two recombinant viral vectored vaccines encoding Pfs25-IMX313 in healthy malaria-naive adults. Replication-deficient chimpanzee adenovirus serotype 63 (ChAd63) and the attenuated orthopoxvirus modified vaccinia virus Ankara (MVA), encoding Pfs25-IMX313, were delivered by the intramuscular route in a heterologous prime-boost regimen using an 8-week interval. Safety data and samples for immunogenicity assays were taken at various time-points. Results: The reactogenicity of the vaccines was similar to that seen in previous trials using the same viral vectors encoding other antigens. The vaccines were immunogenic and induced both antibody and T cell responses against Pfs25, but significant transmission reducing activity (TRA) was not observed in most volunteers by standard membrane feeding assay. Conclusion: Both vaccines were well tolerated and demonstrated a favorable safety profile in malaria-naive adults. However, the transmission reducing activity of the antibodies generated were weak, suggesting the need for an alternative vaccine formulation. Trial Registration: Clinicaltrials.gov NCT02532049.


Subject(s)
Immunogenicity, Vaccine , Malaria Vaccines/administration & dosage , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , Vaccines, Synthetic/administration & dosage , Antibodies, Protozoan/blood , Cells, Cultured , England , Healthy Volunteers , Humans , Immunization , Malaria Vaccines/adverse effects , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Malaria, Falciparum/transmission , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , T-Lymphocytes/parasitology , Time Factors , Vaccines, Synthetic/adverse effects , Vaccines, Synthetic/immunology
3.
Front Physiol ; 11: 194, 2020.
Article in English | MEDLINE | ID: mdl-32273847

ABSTRACT

Non-excitable cells (NECs) such as cardiac myofibroblasts that are electrotonically coupled to cardiomyocytes affect conduction velocity (θ) by representing a capacitive load (CL: increased membrane to be charged) and a resistive load (RL: partial depolarization of coupled cardiomyocytes). In this study, we untangled the relative contributions of both loading modalities to NEC-dependent arrhythmogenic conduction slowing. Discrimination between CL and RL was achieved by reversibly removing the RL component by light activation of the halorhodopsin-based hyperpolarizing membrane voltage actuator eNpHR3.0-eYFP (enhanced yellow fluorescent protein) expressed in communication-competent fibroblast-like NIH3T3 cells (3T3 HR cells) that served as a model of coupled NECs. Experiments were conducted with strands of neonatal rat ventricular cardiomyocytes coated at increasing densities with 3T3 HR cells. Impulse conduction along preparations stimulated at 2.5 Hz was assessed with multielectrode arrays. The relative density of 3T3 HR cells was determined by dividing the area showing eYFP fluorescence by the area covered with cardiomyocytes [coverage factor (CF)]. Compared to cardiomyocytes, 3T3 HR cells exhibited a depolarized membrane potential (-34 mV) that was shifted to -104 mV during activation of halorhodopsin. Without illumination, 3T3 HR cells slowed θ along the preparations from ∼330 mm/s (control cardiomyocyte strands) to ∼100 mm/s (CF = ∼0.6). Illumination of the preparation increased the electrogram amplitudes and induced partial recovery of θ at CF > 0.3. Computer simulations demonstrated that the θ deficit observed during illumination was attributable in full to the CL represented by coupled 3T3 HR cells with θ showing a power-law relationship to capacitance with an exponent of -0.78 (simulations) and -0.99 (experiments). The relative contribution of CL and RL to conduction slowing changed as a function of CF with CL dominating at CF ≤ ∼0.3, both mechanisms being equally important at CF = ∼0.5, and RL dominating over CL at CF > 0.5. The finding that RL did not affect θ at CFs ≤ 0.3 is explained by the circumstance that, at the respective moderate levels of cardiomyocyte depolarization, supernormal conduction stabilized propagation. The findings provide experimental estimates for the dependence of θ on membrane capacitance in general and suggest that the myocardium can absorb moderate numbers of electrotonically coupled NECs without showing substantial alterations of θ.

4.
Regen Med ; 13(8): 935-944, 2018 12.
Article in English | MEDLINE | ID: mdl-30488776

ABSTRACT

Human pluripotent stem cells (hPSCs) have the potential to transform medicine. However, hurdles remain to ensure safety for such cellular products. Science-based understanding of the requirements for source materials is required as are appropriate materials. Leaders in hPSC biology, clinical translation, biomanufacturing and regulatory issues were brought together to define requirements for source materials for the production of hPSC-derived therapies and to identify other key issues for the safety of cell therapy products. While the focus of this meeting was on hPSC-derived cell therapies, many of the issues are generic to all cell-based medicines. The intent of this report is to summarize the key issues discussed and record the consensus reached on each of these by the expert delegates.


Subject(s)
Cell- and Tissue-Based Therapy/standards , Patient Safety , Pluripotent Stem Cells/transplantation , Regenerative Medicine/standards , Cell- and Tissue-Based Therapy/adverse effects , Cell- and Tissue-Based Therapy/methods , Practice Guidelines as Topic , Regenerative Medicine/methods , United Kingdom
5.
NPJ Vaccines ; 3: 32, 2018.
Article in English | MEDLINE | ID: mdl-30131879

ABSTRACT

Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is a leading asexual blood-stage vaccine candidate for malaria. In preparation for clinical trials, a full-length PfRH5 protein vaccine called "RH5.1" was produced as a soluble product under cGMP using the ExpreS2 platform (based on a Drosophila melanogaster S2 stable cell line system). Following development of a high-producing monoclonal S2 cell line, a master cell bank was produced prior to the cGMP campaign. Culture supernatants were processed using C-tag affinity chromatography followed by size exclusion chromatography and virus-reduction filtration. The overall process yielded >400 mg highly pure RH5.1 protein. QC testing showed the MCB and the RH5.1 product met all specified acceptance criteria including those for sterility, purity, and identity. The RH5.1 vaccine product was stored at -80 °C and is stable for over 18 months. Characterization of the protein following formulation in the adjuvant system AS01B showed that RH5.1 is stable in the timeframe needed for clinical vaccine administration, and that there was no discernible impact on the liposomal formulation of AS01B following addition of RH5.1. Subsequent immunization of mice confirmed the RH5.1/AS01B vaccine was immunogenic and could induce functional growth inhibitory antibodies against blood-stage P. falciparum in vitro. The RH5.1/AS01B was judged suitable for use in humans and has since progressed to phase I/IIa clinical trial. Our data support the future use of the Drosophila S2 cell and C-tag platform technologies to enable cGMP-compliant biomanufacture of other novel and "difficult-to-express" recombinant protein-based vaccines.

6.
JCI Insight ; 2(12)2017 Jun 15.
Article in English | MEDLINE | ID: mdl-28614791

ABSTRACT

BACKGROUND: Plasmodium vivax is the most widespread human malaria geographically; however, no effective vaccine exists. Red blood cell invasion by the P. vivax merozoite depends on an interaction between the Duffy antigen receptor for chemokines (DARC) and region II of the parasite's Duffy-binding protein (PvDBP_RII). Naturally acquired binding-inhibitory antibodies against this interaction associate with clinical immunity, but it is unknown whether these responses can be induced by human vaccination. METHODS: Safety and immunogenicity of replication-deficient chimpanzee adenovirus serotype 63 (ChAd63) and modified vaccinia virus Ankara (MVA) viral vectored vaccines targeting PvDBP_RII (Salvador I strain) were assessed in an open-label dose-escalation phase Ia study in 24 healthy UK adults. Vaccines were delivered by the intramuscular route in a ChAd63-MVA heterologous prime-boost regimen using an 8-week interval. RESULTS: Both vaccines were well tolerated and demonstrated a favorable safety profile in malaria-naive adults. PvDBP_RII-specific ex-vivo IFN-γ T cell, antibody-secreting cell, memory B cell, and serum IgG responses were observed after the MVA boost immunization. Vaccine-induced antibodies inhibited the binding of vaccine homologous and heterologous variants of recombinant PvDBP_RII to the DARC receptor, with median 50% binding-inhibition titers greater than 1:100. CONCLUSION: We have demonstrated for the first time to our knowledge that strain-transcending antibodies can be induced against the PvDBP_RII antigen by vaccination in humans. These vaccine candidates warrant further clinical evaluation of efficacy against the blood-stage P. vivax parasite. TRIAL REGISTRATION: Clinicaltrials.gov NCT01816113. FUNDING: Support was provided by the UK Medical Research Council, UK National Institute of Health Research Oxford Biomedical Research Centre, and the Wellcome Trust.

7.
J Infect Dis ; 211(7): 1076-86, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25336730

ABSTRACT

BACKGROUND: Circumsporozoite protein (CS) is the antigenic target for RTS,S, the most advanced malaria vaccine to date. Heterologous prime-boost with the viral vectors simian adenovirus 63 (ChAd63)-modified vaccinia virus Ankara (MVA) is the most potent inducer of T-cells in humans, demonstrating significant efficacy when expressing the preerythrocytic antigen insert multiple epitope-thrombospondin-related adhesion protein (ME-TRAP). We hypothesized that ChAd63-MVA containing CS may result in a significant clinical protective efficacy. METHODS: We conducted an open-label, 2-site, partially randomized Plasmodium falciparum sporozoite controlled human malaria infection (CHMI) study to compare the clinical efficacy of ChAd63-MVA CS with ChAd63-MVA ME-TRAP. RESULTS: One of 15 vaccinees (7%) receiving ChAd63-MVA CS and 2 of 15 (13%) receiving ChAd63-MVA ME-TRAP achieved sterile protection after CHMI. Three of 15 vaccinees (20%) receiving ChAd63-MVA CS and 5 of 15 (33%) receiving ChAd63-MVA ME-TRAP demonstrated a delay in time to treatment, compared with unvaccinated controls. In quantitative polymerase chain reaction analyses, ChAd63-MVA CS was estimated to reduce the liver parasite burden by 69%-79%, compared with 79%-84% for ChAd63-MVA ME-TRAP. CONCLUSIONS: ChAd63-MVA CS does reduce the liver parasite burden, but ChAd63-MVA ME-TRAP remains the most promising antigenic insert for a vectored liver-stage vaccine. Detailed analyses of parasite kinetics may allow detection of smaller but biologically important differences in vaccine efficacy that can influence future vaccine development. CLINICAL TRIALS REGISTRATION: NCT01623557.


Subject(s)
Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Adenoviruses, Simian/genetics , Adenoviruses, Simian/immunology , Adolescent , Adult , Antibodies, Protozoan/biosynthesis , Epitopes/immunology , Female , Genetic Vectors , Humans , Interferon-gamma/immunology , Liver/virology , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Male , Middle Aged , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Young Adult
8.
Mol Ther ; 22(12): 2142-2154, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25156127

ABSTRACT

The development of effective vaccines against difficult disease targets will require the identification of new subunit vaccination strategies that can induce and maintain effective immune responses in humans. Here we report on a phase 1a clinical trial using the AMA1 antigen from the blood-stage Plasmodium falciparum malaria parasite delivered either as recombinant protein formulated with Alhydrogel adjuvant with and without CPG 7909, or using recombinant vectored vaccines--chimpanzee adenovirus ChAd63 and the orthopoxvirus MVA. A variety of promising "mixed-modality" regimens were tested. All volunteers were primed with ChAd63, and then subsequently boosted with MVA and/or protein-in-adjuvant using either an 8- or 16-week prime-boost interval. We report on the safety of these regimens, as well as the T cell, B cell, and serum antibody responses. Notably, IgG antibody responses primed by ChAd63 were comparably boosted by AMA1 protein vaccine, irrespective of whether CPG 7909 was included in the Alhydrogel adjuvant. The ability to improve the potency of a relatively weak aluminium-based adjuvant in humans, by previously priming with an adenoviral vaccine vector encoding the same antigen, thus offers a novel vaccination strategy for difficult or neglected disease targets when access to more potent adjuvants is not possible.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Antigens, Protozoan/administration & dosage , Malaria Vaccines/administration & dosage , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , Adenoviruses, Simian/genetics , Adult , Aluminum Hydroxide/administration & dosage , Antigens, Protozoan/immunology , Combined Modality Therapy , Genetic Vectors/administration & dosage , Humans , Immunization, Secondary , Male , Middle Aged , Oligodeoxyribonucleotides/administration & dosage , Orthopoxvirus/genetics , Vaccination , Young Adult
9.
Mol Ther ; 22(11): 1992-2003, 2014 Nov.
Article in English | MEDLINE | ID: mdl-24930599

ABSTRACT

To induce a deployable level of efficacy, a successful malaria vaccine would likely benefit from both potent cellular and humoral immunity. These requirements are met by a heterologous prime-boost immunization strategy employing a chimpanzee adenovirus vector followed by modified vaccinia Ankara (MVA), both encoding the pre-erythrocytic malaria antigen ME-thrombospondin-related adhesive protein (TRAP), with high immunogenicity and significant efficacy in UK adults. We undertook two phase 1b open-label studies in adults in Kenya and The Gambia in areas of similar seasonal malaria transmission dynamics and have previously reported safety and basic immunogenicity data. We now report flow cytometry and additional interferon (IFN)-γ enzyme-linked immunospot (ELISPOT) data characterizing pre-existing and induced cellular immunity as well as anti-TRAP IgG responses. T-cell responses induced by vaccination averaged 1,254 spot-forming cells (SFC) per million peripheral blood mononuclear cells (PBMC) across both trials and flow cytometry revealed cytokine production from both CD4(+) and CD8(+) T cells with the frequency of CD8(+) IFN-γ-secreting monofunctional T cells (previously shown to associate with vaccine efficacy) particularly high in Kenyan adults. Immunization with ChAd63 and MVA ME-TRAP induced strong cellular and humoral immune responses in adults living in two malaria-endemic regions of Africa. This prime-boost approach targeting the pre-erythrocytic stage of the malaria life-cycle is now being assessed for efficacy in a target population.


Subject(s)
Adenoviruses, Simian/genetics , Malaria Vaccines/administration & dosage , Malaria, Falciparum/prevention & control , Protozoan Proteins/immunology , Vaccinia virus/genetics , Adult , Endemic Diseases , Gambia/epidemiology , Humans , Immunization, Secondary , Kenya/epidemiology , Malaria Vaccines/genetics , Malaria Vaccines/immunology , Malaria, Falciparum/epidemiology , Protozoan Proteins/genetics , T-Lymphocytes/immunology , United Kingdom
10.
Mol Ther ; 22(2): 464-475, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24166483

ABSTRACT

Virus diversity and escape from immune responses are the biggest challenges to the development of an effective vaccine against HIV-1. We hypothesized that T-cell vaccines targeting the most conserved regions of the HIV-1 proteome, which are common to most variants and bear fitness costs when mutated, will generate effectors that efficiently recognize and kill virus-infected cells early enough after transmission to potentially impact on HIV-1 replication and will do so more efficiently than whole protein-based T-cell vaccines. Here, we describe the first-ever administration of conserved immunogen vaccines vectored using prime-boost regimens of DNA, simian adenovirus and modified vaccinia virus Ankara to uninfected UK volunteers. The vaccine induced high levels of effector T cells that recognized virus-infected autologous CD4(+) cells and inhibited HIV-1 replication by up to 5.79 log10. The virus inhibition was mediated by both Gag- and Pol- specific effector CD8(+) T cells targeting epitopes that are typically subdominant in natural infection. These results provide proof of concept for using a vaccine to target T cells at conserved epitopes, showing that these T cells can control HIV-1 replication in vitro.


Subject(s)
AIDS Vaccines/immunology , Epitopes, T-Lymphocyte/immunology , HIV Infections/immunology , HIV-1/immunology , T-Lymphocytes/immunology , AIDS Vaccines/genetics , Adolescent , Adult , Amino Acid Sequence , Cells, Cultured , Conserved Sequence/immunology , Epitope Mapping , Epitopes, T-Lymphocyte/chemistry , Female , HIV Infections/prevention & control , HIV-1/genetics , Humans , Male , Middle Aged , Molecular Sequence Data , T-Cell Antigen Receptor Specificity/immunology , T-Lymphocyte Subsets/immunology , Vaccines, DNA/genetics , Vaccines, DNA/immunology , Virus Replication/immunology , Young Adult , gag Gene Products, Human Immunodeficiency Virus/immunology , pol Gene Products, Human Immunodeficiency Virus/immunology
11.
Nat Commun ; 4: 2836, 2013.
Article in English | MEDLINE | ID: mdl-24284865

ABSTRACT

Induction of antigen-specific CD8(+) T cells offers the prospect of immunization against many infectious diseases, but no subunit vaccine has induced CD8(+) T cells that correlate with efficacy in humans. Here we demonstrate that a replication-deficient chimpanzee adenovirus vector followed by a modified vaccinia virus Ankara booster induces exceptionally high frequency T-cell responses (median >2400 SFC/10(6) peripheral blood mononuclear cells) to the liver-stage Plasmodium falciparum malaria antigen ME-TRAP. It induces sterile protective efficacy against heterologous strain sporozoites in three vaccinees (3/14, 21%), and delays time to patency through substantial reduction of liver-stage parasite burden in five more (5/14, 36%), P=0.008 compared with controls. The frequency of monofunctional interferon-γ-producing CD8(+) T cells, but not antibodies, correlates with sterile protection and delay in time to patency (P(corrected)=0.005). Vaccine-induced CD8(+) T cells provide protection against human malaria, suggesting that a major limitation of previous vaccination approaches has been the insufficient magnitude of induced T cells.


Subject(s)
Adenoviruses, Simian/immunology , CD8-Positive T-Lymphocytes/immunology , Malaria Vaccines/immunology , Malaria, Falciparum/prevention & control , Vaccinia virus/immunology , Adenoviruses, Simian/genetics , Adolescent , Adult , Animals , Antibodies, Protozoan/immunology , Female , Genetic Vectors/genetics , Genetic Vectors/immunology , Humans , Immunity, Cellular , Immunization , Immunization, Secondary , Interferon-gamma/immunology , Leukocytes, Mononuclear , Malaria Vaccines/administration & dosage , Malaria Vaccines/genetics , Malaria, Falciparum/immunology , Malaria, Falciparum/parasitology , Male , Middle Aged , Plasmodium falciparum/genetics , Plasmodium falciparum/immunology , Protozoan Proteins/genetics , Protozoan Proteins/immunology , Vaccinia virus/genetics , Young Adult
12.
PLoS One ; 8(3): e57726, 2013.
Article in English | MEDLINE | ID: mdl-23526949

ABSTRACT

BACKGROUND: Heterologous prime boost immunization with chimpanzee adenovirus 63 (ChAd63) and Modified vaccinia Virus Ankara (MVA) vectored vaccines is a strategy recently shown to be capable of inducing strong cell mediated responses against several antigens from the malaria parasite. ChAd63-MVA expressing the Plasmodium falciparum pre-erythrocytic antigen ME-TRAP (multiple epitope string with thrombospondin-related adhesion protein) is a leading malaria vaccine candidate, capable of inducing sterile protection in malaria naïve adults following controlled human malaria infection (CHMI). METHODOLOGY: We conducted two Phase Ib dose escalation clinical trials assessing the safety and immunogenicity of ChAd63-MVA ME-TRAP in 46 healthy malaria exposed adults in two African countries with similar malaria transmission patterns. RESULTS: ChAd63-MVA ME-TRAP was shown to be safe and immunogenic, inducing high-level T cell responses (median >1300 SFU/million PBMC). CONCLUSIONS: ChAd63-MVA ME-TRAP is a safe and highly immunogenic vaccine regimen in adults with prior exposure to malaria. Further clinical trials to assess safety and immunogenicity in children and infants and protective efficacy in the field are now warranted. TRIAL REGISTRATION: Pactr.org PACTR2010020001771828 Pactr.org PACTR201008000221638 ClinicalTrials.gov NCT01373879 NCT01373879 ClinicalTrials.gov NCT01379430 NCT01379430.


Subject(s)
Malaria Vaccines/administration & dosage , Plasmodium falciparum/immunology , Adenoviruses, Simian/genetics , Adult , Antigens, Protozoan/genetics , Gambia , Genetic Vectors , Humans , Immunization, Secondary , Interferon-gamma/blood , Kenya , Malaria Vaccines/genetics , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Male , Middle Aged , Plasmodium falciparum/genetics , T-Lymphocytes/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Vaccinia virus/genetics , Young Adult
13.
Mol Ther ; 20(12): 2355-68, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23089736

ABSTRACT

The induction of cellular immunity, in conjunction with antibodies, may be essential for vaccines to protect against blood-stage infection with the human malaria parasite Plasmodium falciparum. We have shown that prime-boost delivery of P. falciparum blood-stage antigens by chimpanzee adenovirus 63 (ChAd63) followed by the attenuated orthopoxvirus MVA is safe and immunogenic in healthy adults. Here, we report on vaccine efficacy against controlled human malaria infection delivered by mosquito bites. The blood-stage malaria vaccines were administered alone, or together (MSP1+AMA1), or with a pre-erythrocytic malaria vaccine candidate (MSP1+ME-TRAP). In this first human use of coadministered ChAd63-MVA regimes, we demonstrate immune interference whereby responses against merozoite surface protein 1 (MSP1) are dominant over apical membrane antigen 1 (AMA1) and ME-TRAP. We also show that induction of strong cellular immunity against MSP1 and AMA1 is safe, but does not impact on parasite growth rates in the blood. In a subset of vaccinated volunteers, a delay in time to diagnosis was observed and sterilizing protection was observed in one volunteer coimmunized with MSP1+AMA1-results consistent with vaccine-induced pre-erythrocytic, rather than blood-stage, immunity. These data call into question the utility of T cell-inducing blood-stage malaria vaccines and suggest that the focus should remain on high-titer antibody induction against susceptible antigen targets.


Subject(s)
Antigens, Protozoan/immunology , Culicidae/parasitology , Culicidae/pathogenicity , Malaria Vaccines/therapeutic use , Merozoite Surface Protein 1/immunology , Adenoviruses, Simian/genetics , Animals , Flow Cytometry , Humans , Malaria Vaccines/administration & dosage , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Orthopoxvirus/immunology , Pan troglodytes/virology
14.
COPD ; 9(5): 466-72, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22676387

ABSTRACT

BACKGROUND: It can be challenging to maintain longitudinal follow-up of subjects in clinical studies. COPDGene is a multicenter, observational study designed to identify genetic factors associated with COPD and to characterize COPD-related phenotypes. To obtain follow-up data on patient's vital status and outcomes, the COPDGene Longitudinal Follow-up (LFU) Program was developed to supplement its parent study. METHODS/RESULTS: We used a telecommunication system that employed automated telephone contact or web-based questions to obtain longitudinal follow-up data in our subjects. A branching questionnaire asked about exacerbations, new therapies, smoking status, development of co-morbid conditions, and general health status. Study coordinators contacted subjects who did not respond to one of the automated methods. We enrolled 10,383 subjects in the COPDGene study. As of August 29, 2011, 7,959 subjects completed 19,955 surveys. On the first survey, 68.8% of subjects who completed their survey did so by electronic means, while 31.3% required coordinator phone follow-up. On each subsequent survey the number of subjects who completed their survey by electronic means increased, while the number of subjects who required coordinator follow-up decreased. Despite many of the patients in the cohort being chronically ill and elderly, there was broad acceptance of the system with over half the cohort using electronic response methods. CONCLUSIONS: The COPDGene LFU Study demonstrated that telecommunications was an effective way to obtain longitudinal follow-up of subjects in a large multicenter study. Web-based and automated phone contacts are accepted by research subjects and could serve as a model for LFU in future studies.


Subject(s)
Data Collection/methods , Telecommunications , Aged , Automation , Cross-Sectional Studies , Female , Humans , Internet , Longitudinal Studies/instrumentation , Longitudinal Studies/methods , Male , Middle Aged , Multicenter Studies as Topic , Pulmonary Disease, Chronic Obstructive/genetics , Surveys and Questionnaires , Telephone
15.
PLoS One ; 7(2): e31208, 2012.
Article in English | MEDLINE | ID: mdl-22363582

ABSTRACT

BACKGROUND: Traditionally, vaccine development against the blood-stage of Plasmodium falciparum infection has focused on recombinant protein-adjuvant formulations in order to induce high-titer growth-inhibitory antibody responses. However, to date no such vaccine encoding a blood-stage antigen(s) alone has induced significant protective efficacy against erythrocytic-stage infection in a pre-specified primary endpoint of a Phase IIa/b clinical trial designed to assess vaccine efficacy. Cell-mediated responses, acting in conjunction with functional antibodies, may be necessary for immunity against blood-stage P. falciparum. The development of a vaccine that could induce both cell-mediated and humoral immune responses would enable important proof-of-concept efficacy studies to be undertaken to address this question. METHODOLOGY: We conducted a Phase Ia, non-randomized clinical trial in 16 healthy, malaria-naïve adults of the chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) replication-deficient viral vectored vaccines encoding two alleles (3D7 and FVO) of the P. falciparum blood-stage malaria antigen; apical membrane antigen 1 (AMA1). ChAd63-MVA AMA1 administered in a heterologous prime-boost regime was shown to be safe and immunogenic, inducing high-level T cell responses to both alleles 3D7 (median 2036 SFU/million PBMC) and FVO (median 1539 SFU/million PBMC), with a mixed CD4(+)/CD8(+) phenotype, as well as substantial AMA1-specific serum IgG responses (medians of 49 µg/mL and 41 µg/mL for 3D7 and FVO AMA1 respectively) that demonstrated growth inhibitory activity in vitro. CONCLUSIONS: ChAd63-MVA is a safe and highly immunogenic delivery platform for both alleles of the AMA1 antigen in humans which warrants further efficacy testing. ChAd63-MVA is a promising heterologous prime-boost vaccine strategy that could be applied to numerous other diseases where strong cellular and humoral immune responses are required for protection. TRIAL REGISTRATION: ClinicalTrials.gov NCT01095055.


Subject(s)
Adenoviruses, Simian/genetics , Antigens, Protozoan/immunology , Genetic Vectors/genetics , Malaria Vaccines/adverse effects , Malaria Vaccines/immunology , Plasmodium falciparum/immunology , Vaccinia virus/genetics , Adolescent , Adult , Animals , Antibodies, Neutralizing/immunology , Antibodies, Protozoan/immunology , Enzyme-Linked Immunospot Assay , Female , Humans , Immunization , Interferon-gamma/immunology , Life Cycle Stages , Malaria, Falciparum/immunology , Male , Middle Aged , Plasmodium falciparum/growth & development , T-Lymphocytes/immunology , Young Adult
16.
J Infect Dis ; 205(5): 772-81, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22275401

ABSTRACT

BACKGROUND: Vaccine development in human Plasmodium falciparum malaria has been hampered by the exceptionally high levels of CD8(+) T cells required for efficacy. Use of potently immunogenic human adenoviruses as vaccine vectors could overcome this problem, but these are limited by preexisting immunity to human adenoviruses. METHODS: From 2007 to 2010, we undertook a phase I dose and route finding study of a new malaria vaccine, a replication-incompetent chimpanzee adenovirus 63 (ChAd63) encoding the preerythrocytic insert multiple epitope thrombospondin-related adhesion protein (ME-TRAP; n = 54 vaccinees) administered alone (n = 28) or with a modified vaccinia virus Ankara (MVA) ME-TRAP booster immunization 8 weeks later (n = 26). We observed an excellent safety profile. High levels of TRAP antigen-specific CD8(+) and CD4(+) T cells, as detected by interferon γ enzyme-linked immunospot assay and flow cytometry, were induced by intramuscular ChAd63 ME-TRAP immunization at doses of 5 × 10(10) viral particles and above. Subsequent administration of MVA ME-TRAP boosted responses to exceptionally high levels, and responses were maintained for up to 30 months postvaccination. CONCLUSIONS: The ChAd63 chimpanzee adenovirus vector appears safe and highly immunogenic, providing a viable alternative to human adenoviruses as vaccine vectors for human use. CLINICAL TRIALS REGISTRATION: NCT00890019.


Subject(s)
Adenoviruses, Simian/immunology , Malaria Vaccines/administration & dosage , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Protozoan Proteins/immunology , Vaccines, DNA/administration & dosage , Vaccines, DNA/immunology , Adenoviruses, Simian/genetics , Animals , Antibodies, Neutralizing/blood , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , Epitopes , Flow Cytometry , Humans , Interferon-gamma/metabolism , Interleukin-2/metabolism , Malaria Vaccines/adverse effects , Tumor Necrosis Factor-alpha/metabolism , Vaccines, DNA/adverse effects
17.
Mol Ther ; 19(12): 2269-76, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21862998

ABSTRACT

Efficacy trials of antibody-inducing protein-in-adjuvant vaccines targeting the blood-stage Plasmodium falciparum malaria parasite have so far shown disappointing results. The induction of cell-mediated responses in conjunction with antibody responses is thought to be one alternative strategy that could achieve protective efficacy in humans. Here, we prepared chimpanzee adenovirus 63 (ChAd63) and modified vaccinia virus Ankara (MVA) replication-deficient vectors encoding the well-studied P. falciparum blood-stage malaria antigen merozoite surface protein 1 (MSP1). A phase Ia clinical trial was conducted in healthy adults of a ChAd63-MVA MSP1 heterologous prime-boost immunization regime. The vaccine was safe and generally well tolerated. Fewer systemic adverse events (AEs) were observed following ChAd63 MSP1 than MVA MSP1 administration. Exceptionally strong T-cell responses were induced, and these displayed a mixed of CD4(+) and CD8(+) phenotype. Substantial MSP1-specific serum immunoglobulin G (IgG) antibody responses were also induced, which were capable of recognizing native parasite antigen, but these did not reach titers sufficient to neutralize P. falciparum parasites in vitro. This viral vectored vaccine regime is thus a leading approach for the induction of strong cellular and humoral immunogenicity against difficult disease targets in humans. Further studies are required to assess whether this strategy can achieve protective efficacy against blood-stage malaria infection.


Subject(s)
Adenoviridae/genetics , CD4-Positive T-Lymphocytes/immunology , Genetic Vectors/therapeutic use , Malaria, Falciparum/immunology , Malaria, Falciparum/therapy , Merozoite Surface Protein 1/immunology , Vaccinia virus/genetics , Adjuvants, Immunologic , Adult , Animals , Antibodies, Protozoan/immunology , Blotting, Western , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Fluorescent Antibody Technique , Humans , Immunity, Cellular , Immunoglobulin G/immunology , Immunologic Memory , Macaca mulatta , Malaria, Falciparum/blood , Male , Merozoite Surface Protein 1/blood , Merozoite Surface Protein 1/genetics , Mice , Plasmodium falciparum/genetics , Plasmodium falciparum/immunology , Vaccination , Young Adult
18.
Endocrinology ; 149(10): 4997-5003, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18566132

ABSTRACT

GnRH neurons are essential for the onset and maintenance of reproduction. Mutations in both fibroblast growth factor receptor (Fgfr1) and Fgf8 have been shown to cause Kallmann syndrome, a disease characterized by hypogonadotropic hypogonadism and anosmia, indicating that FGF signaling is indispensable for the formation of a functional GnRH system. Presently it is unclear which stage of GnRH neuronal development is most impacted by FGF signaling deficiency. GnRH neurons express both FGFR1 and -3; thus, it is also unclear whether FGFR1 or FGFR3 contributes directly to GnRH system development. In this study, we examined the developing GnRH system in mice deficient in FGF8, FGFR1, or FGFR3 to elucidate the individual contribution of these FGF signaling components. Our results show that the early emergence of GnRH neurons from the embryonic olfactory placode requires FGF8 signaling, which is mediated through FGFR1, not FGFR3. These data provide compelling evidence that the developing GnRH system is exquisitely sensitive to reduced levels of FGF signaling. Furthermore, Kallmann syndrome stemming from FGF signaling deficiency may be due primarily to defects in early GnRH neuronal development prior to their migration into the forebrain.


Subject(s)
Fibroblast Growth Factor 8/metabolism , Gonadotropin-Releasing Hormone/physiology , Olfactory Pathways/embryology , Olfactory Pathways/physiology , Receptor, Fibroblast Growth Factor, Type 1/metabolism , Signal Transduction/physiology , Animals , Apoptosis/physiology , Cell Movement/physiology , Gene Expression Regulation, Developmental , Hypothalamus/cytology , Hypothalamus/embryology , Hypothalamus/physiology , Intermediate Filament Proteins/metabolism , Membrane Glycoproteins/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/metabolism , Neurons/physiology , Olfactory Pathways/cytology , Peripherins , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 3/metabolism , Trans-Activators/metabolism , Vomeronasal Organ/cytology , Vomeronasal Organ/embryology , Vomeronasal Organ/physiology
19.
Biochem J ; 409(1): 205-13, 2008 Jan 01.
Article in English | MEDLINE | ID: mdl-17714076

ABSTRACT

SKN-1 in the nematode worm Caenorhabditis elegans is functionally orthologous to mammalian NRF2 [NF-E2 (nuclear factor-E2)-related factor 2], a protein regulating response to oxidative stress. We have examined both the expression and activity of SKN-1 in response to a variety of oxidative stressors and to down-regulation of specific gene targets by RNAi (RNA interference). We used an SKN-1-GFP (green fluorescent protein) translational fusion to record changes in both skn-1 expression and SKN-1 nuclear localization, and a gst-4-GFP transcriptional fusion to measure SKN-1 transcriptional activity. GST-4 (glutathione transferase-4) is involved in the Phase II oxidative stress response and its expression is lost in an skn-1(zu67) mutant. In the present study, we show that the regulation of skn-1 is tied to the protein-degradation machinery of the cell. RNAi-targeted removal of most proteasome subunits in C. elegans caused nuclear localization of SKN-1 and, in some cases, induced transcription of gst-4. Most intriguingly, RNAi knockdown of proteasome core subunits caused nuclear localization of SKN-1 and induced gst-4, whereas RNAi knockdown of proteasome regulatory subunits resulted in nuclear localization of SKN-1 but did not induce gst-4. RNAi knockdown of ubiquitin-specific hydrolases and chaperonin components also caused nuclear localization of SKN-1 and, in some cases, also induced gst-4 transcription. skn-1 activation by proteasome dysfunction could be occurring by one or several mechanisms: (i) the reduced processivity of dysfunctional proteasomes may allow oxidatively damaged by-products to build up, which, in turn, activate the skn-1 stress response; (ii) dysfunctional proteasomes may activate the skn-1 stress response by blocking the constitutive turnover of SKN-1; and (iii) dysfunctional proteasomes may activate an unidentified signalling pathway that feeds back to control the skn-1 stress response.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans Proteins/physiology , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/physiology , Oxidative Stress , Proteasome Endopeptidase Complex/metabolism , Transcription Factors/metabolism , Transcription Factors/physiology , Animals , Caenorhabditis elegans , Chaperonins/chemistry , Gene Expression Regulation , Green Fluorescent Proteins/metabolism , Microscopy, Fluorescence , Models, Biological , RNA Interference , Transcription, Genetic , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL
...