Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
Add more filters










Publication year range
1.
Adv Sci (Weinh) ; 10(25): e2205180, 2023 09.
Article in English | MEDLINE | ID: mdl-37409430

ABSTRACT

The intestinal epithelium is the fastest renewing tissue in mammals and its regenerative process must be tightly controlled to minimize the risk of dysfunction and tumorigenesis. The orderly expression and activation of Yes-associated protein (YAP) are the key steps in driving intestinal regeneration and crucial for intestinal homeostasis. However, the regulatory mechanisms controlling this process remain largely unknown. Here, it is discovered that evolutionarily conserved signaling intermediate in Toll pathways (ECSIT), a multi-functional protein, is enriched along the crypt-villus axis. Intestinal cell-specific ablation of ECSIT results in the dysregulation of intestinal differentiation unexpectedly accompanied with enhanced YAP protein dependent on translation, thus transforming intestinal cells to early proliferative stem "-like" cells and augmenting intestinal tumorigenesis. Loss of ECSIT leads to metabolic reprogramming in favor of amino acid-based metabolism, which results in demethylation of genes encoding the eukaryotic initiation factor 4F pathway and their increased expression that further promotes YAP translation initiation culminating in intestinal homeostasis imbalance and tumorigenesis. It is also shown that the expression of ECSIT is positively correlated with the survival of patients with colorectal cancer. Together, these results demonstrate the important role of ECSIT in regulating YAP protein translation to control intestinal homeostasis and tumorigenesis.


Subject(s)
Adaptor Proteins, Signal Transducing , Signal Transduction , Animals , Humans , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cell Transformation, Neoplastic/genetics , Homeostasis , Intestines , Mammals/metabolism
2.
Biomolecules ; 12(12)2022 11 22.
Article in English | MEDLINE | ID: mdl-36551159

ABSTRACT

Secretory leucoprotease inhibitor (SLPI) has multifaceted functions, including inhibition of protease activity, antimicrobial functions, and anti-inflammatory properties. In this study, we show that SLPI plays a role in controlling pulmonary Pseudomonas aeruginosa infection. Mice lacking SLPI were highly susceptible to P. aeruginosa infection, however there was no difference in bacterial burden. Utilising a model of P. aeruginosa LPS-induced lung inflammation, human recombinant SLPI (hrSLPI) administered intraperitoneally suppressed the recruitment of inflammatory cells in the bronchoalveolar lavage fluid (BALF) and resulted in reduced BALF and serum levels of inflammatory cytokines and chemokines. This anti-inflammatory effect of hrSLPI was similarly demonstrated in a systemic inflammation model induced by intraperitoneal injection of LPS from various bacteria or lipoteichoic acid, highlighting the broad anti-inflammatory properties of hrSLPI. Moreover, in bone-marrow-derived macrophages, hrSLPI reduced LPS-induced phosphorylation of p-IkB-α, p-IKK-α/ß, p-P38, demonstrating that the anti-inflammatory effect of hrSLPI was due to the inhibition of the NFκB and MAPK pathways. In conclusion, administration of hrSLPI attenuates excessive inflammatory responses and is therefore, a promising strategy to target inflammatory diseases such as acute respiratory distress syndrome or sepsis and could potentially be used to augment antibiotic treatment.


Subject(s)
Inflammation , Pseudomonas Infections , Secretory Leukocyte Peptidase Inhibitor , Animals , Humans , Mice , Inflammation/metabolism , Inflammation/microbiology , Lipopolysaccharides , Pseudomonas Infections/metabolism , Pseudomonas Infections/therapy , Secretory Leukocyte Peptidase Inhibitor/administration & dosage , Secretory Leukocyte Peptidase Inhibitor/metabolism , Recombinant Proteins/administration & dosage
3.
Proc Natl Acad Sci U S A ; 119(45): e2210809119, 2022 11 08.
Article in English | MEDLINE | ID: mdl-36322773

ABSTRACT

Inflammatory pathways usually utilize negative feedback regulatory systems to prevent tissue damage arising from excessive inflammatory response. Whether such negative feedback mechanisms exist in inflammasome activation remains unknown. Gasdermin D (GSDMD) is the pyroptosis executioner of downstream inflammasome signaling. Here, we found that GSDMD, after its cleavage by caspase-1/11, utilizes its RFWK motif in the N-terminal ß1-ß2 loop to inhibit the activation of caspase-1/11 and downstream inflammation in a negative feedback manner. Furthermore, an RFWK motif-based peptide inhibitor can inhibit caspase-1/11 activation and its downstream substrates GSDMD and interleukin-1ß cleavage, as well as lipopolysaccharide-induced sepsis in mice. Collectively, these findings provide a demonstration of the N-terminal fragment of GSDMD as a negative feedback regulator controlling inflammasome activation and a detailed delineation of the underlying inhibitory mechanism.


Subject(s)
Inflammasomes , Intracellular Signaling Peptides and Proteins , Animals , Mice , Caspase 1/metabolism , Feedback , Inflammasomes/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Neoplasm Proteins/metabolism , Phosphate-Binding Proteins , Pore Forming Cytotoxic Proteins/pharmacology
4.
J Immunol ; 207(9): 2325-2336, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34588221

ABSTRACT

Ubiquitination regulates immune signaling, and multiple E3 ubiquitin ligases have been studied in the context of their role in immunity. Despite this progress, the physiological roles of the Pellino E3 ubiquitin ligases, especially Pellino2, in immune regulation remain largely unknown. Accordingly, this study aimed to elucidate the role of Pellino2 in murine dendritic cells (DCs). In this study, we reveal a critical role of Pellino2 in regulation of the proinflammatory response following TLR9 stimulation. Pellino2-deficient murine DCs show impaired secretion of IL-6 and IL-12. Loss of Pellino2 does not affect TLR9-induced activation of NF-κB or MAPKs, pathways that drive expression of IL-6 and IL-12. Furthermore, DCs from Pellino2-deficient mice show impaired production of type I IFN following endosomal TLR9 activation, and it partly mediates a feed-forward loop of IFN-ß that promotes IL-12 production in DCs. We also observe that Pellino2 in murine DCs is downregulated following TLR9 stimulation, and its overexpression induces upregulation of both IFN-ß and IL-12, demonstrating the sufficiency of Pellino2 in driving these responses. This suggests that Pellino2 is critical for executing TLR9 signaling, with its expression being tightly regulated to prevent excessive inflammatory response. Overall, this study highlights a (to our knowledge) novel role for Pellino2 in regulating DC functions and further supports important roles for Pellino proteins in mediating and controlling immunity.


Subject(s)
Dendritic Cells/immunology , Inflammation/immunology , Nuclear Proteins/metabolism , Toll-Like Receptor 9/metabolism , Animals , Gene Expression Regulation , Immunity , Interferon-beta/metabolism , Interleukin-12/metabolism , Interleukin-6/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Nuclear Proteins/genetics , Signal Transduction , Ubiquitination
5.
Nat Immunol ; 22(10): 1203-1204, 2021 10.
Article in English | MEDLINE | ID: mdl-34556882
6.
JCI Insight ; 6(12)2021 06 22.
Article in English | MEDLINE | ID: mdl-34032637

ABSTRACT

Evolutionarily conserved signaling intermediate in Toll pathways (ECSIT) is a protein with roles in early development, activation of the transcription factor NF-κB, and production of mitochondrial reactive oxygen species (mROS) that facilitates clearance of intracellular bacteria like Salmonella. ECSIT is also an important assembly factor for mitochondrial complex I. Unlike the murine form of Ecsit (mEcsit), we demonstrate here that human ECSIT (hECSIT) is highly labile. To explore whether the instability of hECSIT affects functions previously ascribed to its murine counterpart, we created a potentially novel transgenic mouse in which the murine Ecsit gene is replaced by the human ECSIT gene. The humanized mouse has low levels of hECSIT protein, in keeping with its intrinsic instability. Whereas low-level expression of hECSIT was capable of fully compensating for mEcsit in its roles in early development and activation of the NF-κB pathway, macrophages from humanized mice showed impaired clearance of Salmonella that was associated with reduced production of mROS. Notably, severe cardiac hypertrophy was manifested in aging humanized mice, leading to premature death. The cellular and molecular basis of this phenotype was delineated by showing that low levels of human ECSIT protein led to a marked reduction in assembly and activity of mitochondrial complex I with impaired oxidative phosphorylation and reduced production of ATP. Cardiac tissue from humanized hECSIT mice also showed reduced mitochondrial fusion and more fission but impaired clearance of fragmented mitochondria. A cardiomyocyte-intrinsic role for Ecsit in mitochondrial function and cardioprotection is also demonstrated. We also show that cardiac fibrosis and damage in humans correlated with low expression of human ECSIT. In summary, our findings identify a role for ECSIT in cardioprotection, while generating a valuable experimental model to study mitochondrial dysfunction and cardiac pathophysiology.


Subject(s)
Adaptor Proteins, Signal Transducing , Cardiomegaly , Myocardium , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cardiomegaly/metabolism , Cardiomegaly/pathology , Cells, Cultured , Humans , Macrophages/metabolism , Mice , Mitochondria/metabolism , Myocardium/metabolism , Myocardium/pathology , NF-kappa B/genetics , NF-kappa B/metabolism
7.
Mol Cell ; 78(1): 42-56.e6, 2020 04 02.
Article in English | MEDLINE | ID: mdl-32035036

ABSTRACT

The functional relevance and mechanistic basis of the effects of the neurotransmitter dopamine (DA) on inflammation remain unclear. Here we reveal that DA inhibited TLR2-induced NF-κB activation and inflammation via the DRD5 receptor in macrophages. We found that the DRD5 receptor, via the EFD and IYX(X)I/L motifs in its CT and IC3 loop, respectively, can directly recruit TRAF6 and its negative regulator ARRB2 to form a multi-protein complex also containing downstream signaling proteins, such as TAK1, IKKs, and PP2A, that impairs TRAF6-mediated activation of NF-κB and expression of pro-inflammatory genes. Furthermore, the DA-DRD5-ARRB2-PP2A signaling axis can prevent S. aureus-induced inflammation and protect mice against S. aureus-induced sepsis and meningitis after DA treatment. Collectively, these findings provide the first demonstration of DA-DRD5 signaling acting to control inflammation and a detailed delineation of the underlying mechanism and identify the DRD5-ARRB2-PP2A axis as a potential target for future therapy of inflammation-associated diseases such as meningitis and sepsis.


Subject(s)
Dopamine/physiology , Inflammation/metabolism , Protein Phosphatase 2/metabolism , Receptors, Dopamine D5/metabolism , Signal Transduction , beta-Arrestin 2/metabolism , Amino Acid Motifs , Animals , Cells, Cultured , Cyclic AMP-Dependent Protein Kinases/metabolism , Cytokines/genetics , Cytokines/metabolism , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/metabolism , Mice , NF-kappa B/antagonists & inhibitors , NF-kappa B/metabolism , Receptors, Dopamine D5/chemistry , TNF Receptor-Associated Factor 6/antagonists & inhibitors , TNF Receptor-Associated Factor 6/metabolism , Toll-Like Receptor 2/antagonists & inhibitors , beta-Arrestin 2/physiology
8.
J Innate Immun ; 12(5): 387-398, 2020.
Article in English | MEDLINE | ID: mdl-31851971

ABSTRACT

Innate immune response is a universal mechanism against invading pathogens. Toll-like receptors (TLRs), being part of a first line of defense, are responsible for detecting a variety of microorganisms. Among them TLR9, which is localized in endosomes, acts as a sensor for unmethylated CpG motifs present in bacteria, DNA viruses (e.g., HSV-1), or fungi. TLRs differ from one another by the use of accessory proteins. MyD88 adapter-like (Mal) adapter molecule is considered a positive regulator of TLR2- and TLR4-dependent pathways. It has been reported that this adapter may also negatively control signal transduction induced by TLR3 anchored in the endosome membrane. So far, the role of Mal adapter protein in the TLR9 signaling pathways has not been clarified. We show for the first time that Mal is engaged in TLR9-de-pendent expression of genes encoding IFNß and TNFα in HSV-1-infected or CpG-C-treated macrophages and requires a noncanonical NF-κB pathway. Moreover, using inhibitor of ERK1/2 we confirmed involvement of these kinases in TLR9-dependent induction of IFNß and TNFα. Our study points to a new role of Mal in TLR9 signaling through a hitherto unknown mechanism whereby lack of Mal specifically impairs ERK1/2-mediated induction of noncanonical NF-κB pathway and concomitant IFNß and TNFα production.


Subject(s)
Herpesvirus 1, Human/physiology , Interferon-beta/metabolism , Macrophages/metabolism , Membrane Glycoproteins/metabolism , Receptors, Interleukin-1/metabolism , Toll-Like Receptor 9/metabolism , Tumor Necrosis Factor-alpha/metabolism , Animals , Humans , Macrophages/virology , Membrane Glycoproteins/deficiency , Mice , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , NF-kappa B/metabolism , Phosphorylation , Receptors, Interleukin-1/deficiency , Signal Transduction
9.
J Exp Med ; 216(11): 2562-2581, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31467036

ABSTRACT

The NLRP3 inflammasome is critical for EAE pathogenesis; however, the role of gasdermin D (GSDMD), a newly identified pyroptosis executioner downstream of NLRP3 inflammasome, in EAE has not been well defined. Here, we observed that the levels of GSDMD protein were greatly enhanced in the CNS of EAE mice, especially near the areas surrounding blood vessels. GSDMD was required for the pathogenesis of EAE, and GSDMD deficiency in peripheral myeloid cells impaired the infiltration of immune cells into the CNS, leading to the suppression of neuroinflammation and demyelination. Furthermore, the loss of GSDMD reduced the activation and differentiation of T cell in the secondary lymphoid organs and prevented T cell infiltration into CNS of EAE. The administration of inflammasome-related cytokines partially rescued the impairment of pathogenesis of EAE in GSDMD KO mice. Collectively, these findings provide the first demonstration of GSDMD in peripheral myeloid cells driving neuroinflammation during EAE pathogenesis.


Subject(s)
Central Nervous System/metabolism , Encephalomyelitis, Autoimmune, Experimental/metabolism , Inflammation/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , Myeloid Cells/metabolism , Phosphate-Binding Proteins/metabolism , Animals , Cells, Cultured , Central Nervous System/pathology , Cytokines/metabolism , Demyelinating Diseases/genetics , Encephalomyelitis, Autoimmune, Experimental/genetics , Female , Inflammasomes/metabolism , Inflammation/genetics , Intracellular Signaling Peptides and Proteins/genetics , Mice , Mice, Inbred C57BL , Mouse Embryonic Stem Cells/cytology , Mouse Embryonic Stem Cells/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Phosphate-Binding Proteins/genetics
10.
iScience ; 16: 468-484, 2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31229895

ABSTRACT

Although mitochondria are known to be involved in host defense against viral infection, the physiological role of mitophagy, a crucial mechanism for maintaining mitochondrial homeostasis, in antiviral immunity remains poorly defined. Here, we show that Parkin, a central player in mitophagy, has a vital function in regulating host antiviral responses. Parkin-knockout mice exhibit improved viral clearance and survival after viral infection. However, Parkin deficiency does not affect antiviral signaling and interferon production. Instead, Parkin deficiency augments innate antiviral inflammation by enhancing mitochondrial ROS (mtROS)-mediated NLRP3 inflammasome activation and promoting viral clearance. Loss of NLRP3 can reverse the enhanced antiviral responses in Parkin knockout mice. Furthermore, we find that Parkin expression is downregulated in peripheral blood mononuclear cells of patients infected with virus. Collectively, our results suggest that Parkin plays an important role in antiviral immunity by controlling mtROS-NLRP3 axis-mediated inflammation. These findings provide physiological insight of the importance of mitophagy in regulating host antiviral response.

12.
J Immunol ; 202(12): 3404-3411, 2019 06 15.
Article in English | MEDLINE | ID: mdl-31076528

ABSTRACT

Obesity underpins the development of numerous chronic diseases, such as type II diabetes mellitus. It is well established that obesity negatively alters immune cell frequencies and functions. Mucosal-associated invariant T (MAIT) cells are a population of innate T cells, which we have previously reported are dysregulated in obesity, with altered circulating and adipose tissue frequencies and a reduction in their IFN-γ production, which is a critical effector function of MAIT cells in host defense. Hence, there is increased urgency to characterize the key molecular mechanisms that drive MAIT cell effector functions and to identify those which are impaired in the obesity setting. In this study, we found that MAIT cells significantly upregulate their rates of glycolysis upon activation in an mTORC1-dependent manner, and this is essential for MAIT cell IFN-γ production. Furthermore, we show that mTORC1 activation is dependent on amino acid transport via SLC7A5. In obese patients, using RNA sequencing, Seahorse analysis, and a series of in vitro experiments, we demonstrate that MAIT cells isolated from obese adults display defective glycolytic metabolism, mTORC1 signaling, and SLC7A5 aa transport. Collectively, our data detail the intrinsic metabolic pathways controlling MAIT cell cytokine production and highlight mTORC1 as an important metabolic regulator that is impaired in obesity, leading to altered MAIT cell responses.


Subject(s)
Diabetes Mellitus, Type 2/immunology , Large Neutral Amino Acid-Transporter 1/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Mucosal-Associated Invariant T Cells/physiology , Obesity/immunology , Adult , Cells, Cultured , Female , Glycolysis , Humans , Interferon-gamma/metabolism , Lymphocyte Activation , Male , Sequence Analysis, RNA , Signal Transduction
13.
Nat Commun ; 9(1): 1560, 2018 04 19.
Article in English | MEDLINE | ID: mdl-29674674

ABSTRACT

The NLRP3 inflammasome has an important function in inflammation by promoting the processing of pro-IL-1ß and pro-IL-18 to their mature bioactive forms, and by inducing cell death via pyroptosis. Here we show a critical function of the E3 ubiquitin ligase Pellino2 in facilitating activation of the NLRP3 inflammasome. Pellino2-deficient mice and myeloid cells have impaired activation of NLRP3 in response to toll-like receptor priming, NLRP3 stimuli and bacterial challenge. These functions of Pellino2 in the NLRP3 pathway are dependent on Pellino2 FHA and RING-like domains, with Pellino2 promoting the ubiquitination of NLRP3 during the priming phase of activation. We also identify a negative function of IRAK1 in the NLRP3 inflammasome, and describe a counter-regulatory relationship between IRAK1 and Pellino2. Our findings reveal a Pellino2-mediated regulatory signaling system that controls activation of the NLRP3 inflammasome.


Subject(s)
Inflammasomes/immunology , NLR Family, Pyrin Domain-Containing 3 Protein/immunology , Nuclear Proteins/immunology , Animals , Humans , Inflammasomes/genetics , Interleukin-1beta/genetics , Interleukin-1beta/immunology , Macrophages/immunology , Macrophages/microbiology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Nuclear Proteins/chemistry , Nuclear Proteins/genetics , Protein Domains , Pseudomonas Infections/immunology , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/physiology , Signal Transduction , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/immunology , Ubiquitination
14.
Cell Death Differ ; 24(11): 1975-1986, 2017 11.
Article in English | MEDLINE | ID: mdl-28885616

ABSTRACT

We have previously reported that myeloid differentiation primary response gene 88 (MyD88) is downregulated during all-trans retinoic acid (RA)-induced differentiation of pluripotent NTera2 human embryonal carcinoma cells (hECCs), whereas its maintained expression is associated with RA differentiation resistance in nullipotent 2102Ep hECCs. MyD88 is the main adapter for toll-like receptor (TLR) signalling, where it determines the secretion of chemokines and cytokines in response to pathogens. In this study, we report that loss of MyD88 is essential for RA-facilitated differentiation of hECCs. Functional analysis using a specific MyD88 peptide inhibitor (PepInh) demonstrated that high MyD88 expression in the self-renewal state inhibits the expression of a specific set of HOX genes. In NTera2 cells, MyD88 is downregulated during RA-induced differentiation, a mechanism that could be broadly replicated by MyD88 PepInh treatment of 2102Ep cells. Notably, MyD88 inhibition transitioned 2102Ep cells into a stable, self-renewing state that appears to be primed for differentiation upon addition of RA. At a molecular level, MyD88 inhibition combined with RA treatment upregulated HOX, RA signalling and TLR signalling genes. These events permit differentiation through a standard downregulation of Oct4-Sox2-Nanog mechanism. In line with its role in regulating secretion of specific proteins, conditioned media experiments demonstrated that differentiated (MyD88 low) NTera2 cell media was sufficient to differentiate NTera2 cells. Protein array analysis indicated that this was owing to secretion of factors known to regulate angiogenesis, neurogenesis and all three branches of TGF-ß Superfamily signalling. Collectively, these data offer new insights into RA controlled differentiation of pluripotent cells, with notable parallels to the ground state model of embryonic stem cell self-renewal. These data may provide insights to facilitate improved differentiation protocols for regenerative medicine and differentiation-therapies in cancer treatment.


Subject(s)
Cell Differentiation/drug effects , Embryonal Carcinoma Stem Cells/pathology , Myeloid Differentiation Factor 88/metabolism , Pluripotent Stem Cells/pathology , Tretinoin/pharmacology , Cell Differentiation/genetics , Cell Self Renewal/drug effects , Cell Self Renewal/genetics , Embryonal Carcinoma Stem Cells/drug effects , Embryonal Carcinoma Stem Cells/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Mesoderm/pathology , Models, Biological , Pluripotent Stem Cells/drug effects , Pluripotent Stem Cells/metabolism , Up-Regulation/drug effects , Up-Regulation/genetics
15.
Nat Neurosci ; 20(5): 674-680, 2017 May.
Article in English | MEDLINE | ID: mdl-28288125

ABSTRACT

Regeneration of CNS myelin involves differentiation of oligodendrocytes from oligodendrocyte progenitor cells. In multiple sclerosis, remyelination can fail despite abundant oligodendrocyte progenitor cells, suggesting impairment of oligodendrocyte differentiation. T cells infiltrate the CNS in multiple sclerosis, yet little is known about T cell functions in remyelination. We report that regulatory T cells (Treg) promote oligodendrocyte differentiation and (re)myelination. Treg-deficient mice exhibited substantially impaired remyelination and oligodendrocyte differentiation, which was rescued by adoptive transfer of Treg. In brain slice cultures, Treg accelerated developmental myelination and remyelination, even in the absence of overt inflammation. Treg directly promoted oligodendrocyte progenitor cell differentiation and myelination in vitro. We identified CCN3 as a Treg-derived mediator of oligodendrocyte differentiation and myelination in vitro. These findings reveal a new regenerative function of Treg in the CNS, distinct from immunomodulation. Although the cells were originally named 'Treg' to reflect immunoregulatory roles, this also captures emerging, regenerative Treg functions.


Subject(s)
Brain/physiology , Myelin Sheath/physiology , Regeneration/physiology , T-Lymphocytes, Regulatory/physiology , Animals , Brain/ultrastructure , Cell Differentiation/physiology , Female , Male , Mice , Nephroblastoma Overexpressed Protein/physiology , Oligodendroglia/physiology , Stem Cells/physiology
16.
Helicobacter ; 22(1)2017 Feb.
Article in English | MEDLINE | ID: mdl-27302665

ABSTRACT

BACKGROUND: Eradication rates for current H. pylori therapies have fallen in recent years, in line with the emergence of antibiotic resistant infections. The development of therapeutic alternatives to antibiotics, such as immunomodulatory therapy and vaccines, requires a more lucid understanding of host-pathogen interactions, including the relationships between the organism and the innate immune response. Pellino proteins are emerging as key regulators of immune signaling, including the Toll-like receptor pathways known to be regulated by H. pylori. The aim of this study was to characterize the role of Pellino proteins in the innate immune response to H. pylori lipopolysaccharide. MATERIALS AND METHODS: Gain-of-function and loss-of-function approaches were utilized to elucidate the role of individual Pellino proteins in the Toll-like receptor 2-mediated response to H. pylori LPS by monitoring NF-ĸB activation and the induction of proinflammatory chemokines. Expression of Pellino family members was investigated in gastric epithelial cells and gastric tissue biopsy material. RESULTS: Pellino1 and Pellino2 positively regulated Toll-like receptor 2-driven responses to H. pylori LPS, whereas Pellino3 exerted a negative modulatory role. Expression of Pellino1 was significantly higher than Pellino3 in gastric epithelial cells and gastric tissue. Furthermore, Pellino1 expression was further augmented in gastric epithelial cells in response to infection with H. pylori or stimulation with H. pylori LPS. CONCLUSIONS: The combination of low Pellino3 levels together with high and inducible Pellino1 expression may be an important determinant of the degree of inflammation triggered upon Toll-like receptor 2 engagement by H. pylori and/or its components, contributing to H. pylori-associated pathogenesis by directing the incoming signal toward an NF-kB-mediated proinflammatory response.


Subject(s)
Immunity, Innate , Lipopolysaccharides/immunology , Nuclear Proteins/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Signal Transduction , Toll-Like Receptor 2/metabolism , Ubiquitin-Protein Ligases/metabolism , Cells, Cultured , Cytokines/metabolism , Epithelial Cells/immunology , Gastric Mucosa/immunology , Humans , Nuclear Proteins/genetics , Organ Culture Techniques , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Ubiquitin-Protein Ligases/genetics
18.
Sci Rep ; 5: 11687, 2015 Jun 29.
Article in English | MEDLINE | ID: mdl-26120048

ABSTRACT

The immune system of H. sapiens has innate signaling pathways that arose in ancestral species. This is exemplified by the discovery of the Toll-like receptor (TLR) pathway using free-living model organisms such as Drosophila melanogaster. The TLR pathway is ubiquitous and controls sensitivity to pathogen-associated molecular patterns (PAMPs) in eukaryotes. There is, however, a marked absence of this pathway from the plathyhelminthes, with the exception of the Pellino protein family, which is present in a number of species from this phylum. Helminth Pellino proteins are conserved having high similarity, both at the sequence and predicted structural protein level, with that of human Pellino proteins. Pellino from a model helminth, Schistosoma mansoni Pellino (SmPellino), was shown to bind and poly-ubiquitinate human IRAK-1, displaying E3 ligase activity consistent with its human counterparts. When transfected into human cells SmPellino is functional, interacting with signaling proteins and modulating mammalian signaling pathways. Strict conservation of a protein family in species lacking its niche signalling pathway is rare and provides a platform to examine the ancestral functions of Pellino proteins that may translate into novel mechanisms of immune regulation in humans.


Subject(s)
Helminth Proteins/metabolism , Helminths/metabolism , Nuclear Proteins/metabolism , Amino Acid Sequence , Amino Acids/metabolism , Animals , Conserved Sequence , Helminth Proteins/chemistry , Humans , Molecular Sequence Data , Nuclear Proteins/chemistry , Phylogeny , Protein Structure, Tertiary , Schistosoma mansoni/chemistry , Sequence Alignment , Sequence Homology, Amino Acid , Signal Transduction , Species Specificity , Toll-Like Receptors/metabolism
19.
Immunol Rev ; 266(1): 93-108, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26085209

ABSTRACT

The sensing of foreign agents by the innate and adaptive immune system triggers complex signal transduction cascades that culminate in expression of gene patterns that facilitate host protection from the invading agent. Post-translational modification of intracellular signaling proteins in these pathways is a key regulatory mechanism with ubiquitination being one of the important processes that controls levels and activities of signaling molecules. E3 ubiquitin ligases are the determining enzymes in dictating the ubiquitination status of individual proteins. Among these hundred E3 ubiquitin ligases are a family of Pellino proteins that are emerging to be important players in immunity and beyond. Herein, we review the roles of the Pellino E3 ubiquitin ligases in innate and adaptive immunity. We discuss their early discovery and characterization and how this has been aided by the highly conserved nature of innate immune signaling across evolution. We describe the molecular roles of Pellino proteins in immune signaling with particular emphasis on their involvement in pathogen recognition receptor (PRR) signaling. The growing appreciation of the importance of Pellino proteins in a wide range of immune-mediated diseases are also evaluated.


Subject(s)
Nuclear Proteins/metabolism , Receptors, Pattern Recognition/metabolism , Ubiquitin-Protein Ligases/metabolism , Adaptive Immunity , Animals , Humans , Immunity, Innate , Signal Transduction , Ubiquitination
20.
Nat Commun ; 6: 6669, 2015 Mar 26.
Article in English | MEDLINE | ID: mdl-25808990

ABSTRACT

Receptor families of the innate immune response engage in 'cross-talk' to tailor optimal immune responses against invading pathogens. However, these responses are subject to multiple levels of regulation to keep in check aberrant inflammatory signals. Here, we describe a role for the orphan receptor interleukin-17 receptor D (IL-17RD) in negatively regulating Toll-like receptor (TLR)-induced responses. Deficiency of IL-17RD expression in cells leads to enhanced pro-inflammatory signalling and gene expression in response to TLR stimulation, and Il17rd(-/-) mice are more susceptible to TLR-induced septic shock. We demonstrate that the intracellular Sef/IL-17R (SEFIR) domain of IL-17RD targets TIR adaptor proteins to inhibit TLR downstream signalling thus revealing a paradigm involving cross-regulation of members of the IL-17R and TLR families.


Subject(s)
Gene Expression Regulation , Immunity, Innate/immunology , Interferon Regulatory Factors/immunology , NF-kappa B/immunology , Receptors, Interleukin/immunology , Shock, Septic/immunology , Toll-Like Receptors/immunology , Adaptor Proteins, Signal Transducing/immunology , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Line , Gene Knockdown Techniques , HEK293 Cells , Humans , Immunity, Innate/genetics , Inflammation , Interferon Regulatory Factors/genetics , Mice , Mice, Knockout , Protein Structure, Tertiary , Receptors, Interleukin/genetics , Shock, Septic/genetics , Signal Transduction , Toll-Like Receptors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...