Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-34769996

ABSTRACT

Traditional biomass utilization is connected with negative environmental and human health impacts. However, its transition to cleaner cooking fuels is still low where the household's fuels preferences play an important role in the process. To examine the factors that influence the household's cooking fuel choice in Northern Sudan, a multinomial logit model (MNL) was used to analyze data collected from Kassala state in two selected districts, New Halfa and Nahr Atabara. The findings show that the most utilized fuels are still firewood and charcoal, which are used by 63.4% of all respondents. The results also revealed that socioeconomic factors have an impact on household fuel choice, where one additional unit of credit access may boost the possibility of choosing LPG by 22.7%. Furthermore, one additional level of education would reduce 5.4% of charcoal users while simultaneously raising 10% of current liquefied petroleum gas (LPG) users. Therefore, the study suggests initiating mobilization and training programs to raise awareness and encourage the usage of cleaner fuels. This study will provide policymakers with information on household cooking energy utilization while designing and developing policies related to energy. It will also contribute to the expanding body of literature concerning the transition to clean cooking fuels from traditional biomass.


Subject(s)
Air Pollution, Indoor , Petroleum , Air Pollution, Indoor/analysis , Cooking , Family Characteristics , Humans , Sudan
2.
Environ Res ; 194: 110683, 2021 03.
Article in English | MEDLINE | ID: mdl-33450236

ABSTRACT

The toxic emissions from coal combustion associated with domestic winter heating requirements are an important public health issue. Waste cooking oil (WCO) holds promise as a means of reducing pollutant emissions thereby improving human health with the co-benefit of decreasing climate-forcing gas emissions by avoiding the combustion of mineral coal. With an annual production of ~2.17 Mt of WCO in Northern China, it could be used to meet the winter heating demand of ~3.25 million rural households, offsetting ~9.83 Mt of raw coal consumption. Through the adoption of coal-to-WCO shift in rural regions of 15 provinces, approximately 15.0%, 15.6%, 15.9% and 13.7%, respectively of CO, PM2.5, SO2 and NOX emissions would be eliminated. It is estimated that such a change would remove the respective contributions of these pollutants to the premature deaths of respectively, 63,400, 29,300, 173,00 and 31,300 rural residents. Such a positive health impact on the labor cohort would reduce the loss of labor supply and work time, as well as producing billions of RMB in economic benefits. WCO-based heating technology has the same effect on the reduction of GWC100 value as other modern energy carriers while also being cheaper and sustainable, long term. Reducing household emissions by substituting raw coal with green energy is a vital strategy to support pathways for sustainable environment design. The results of this work for the coal-to-WCO shift can reinforce the support for coal phase-out in China.


Subject(s)
Air Pollutants , Coal , Air Pollutants/analysis , China , Coal/analysis , Cooking , Heating , Humans , Particulate Matter/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...