Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters











Publication year range
1.
J Chromatogr B Biomed Sci Appl ; 739(1): 117-23, 2000 Feb 28.
Article in English | MEDLINE | ID: mdl-10744320

ABSTRACT

Phycoerythrin is a major light-harvesting pigment of red algae and cyanobacteria widely used as a fluorescent probe. In this study, phycoerythrin of the red macroalga Palmaria palmata was extracted by grinding the algal sample in liquid nitrogen, homogenisation in phosphate buffer and centrifugation. Phycoerythrin was then purified from this crude extract using preparative polyacrylamide gel electrophoresis (PAGE) with a continuous elution system and detected by its pink colour and fluorescence. The pigment presented a typical spectrum of R-phycoerythrin, with three absorbance maxima at 499, 545 and 565 nm, and displayed a fluorescence maximum at 578 nm. The absorbance ratio A565/A280, a criterion for purity, was 3.2. A single protein of relative molecular mass 240,000 was detected on native-PAGE with silver staining. Sodium dodecyl sulphate-PAGE demonstrated the presence of two major subunits with Mr 20,000 and 21,000, respectively, and a very minor subunit of Mr 30,000. These observations are consistent with the (alphabeta)6gamma subunit composition characteristic of R-phycoerythrin. Phycoerythrin of Palmaria palmata was determined to be present in larger amounts in autumn and showed a good stability up to 60 degrees C and between pH 3.5 and 9.5. In conclusion, phycoerythrin of Palmaria palmata was purified in a single-step using preparative PAGE. Obtaining pure R-phycoerythrin of Palmaria palmata will allow one to evaluate its fluorescence properties for future applications in biochemical techniques.


Subject(s)
Electrophoresis, Polyacrylamide Gel/methods , Phycoerythrin/isolation & purification , Rhodophyta/chemistry , Hydrogen-Ion Concentration , Phycoerythrin/metabolism , Spectrophotometry, Atomic/methods , Temperature
2.
Biochemistry ; 36(23): 6896-905, 1997 Jun 10.
Article in English | MEDLINE | ID: mdl-9188684

ABSTRACT

Subspecies defining the maturation pathway of bovine chymotrypsinogen to alpha-chymotrypsin have been separated in a single chromatographic run by affinity to iminodiacetic acid-Cu(II) [IDA-Cu(II)] immobilized onto Novarose. A major highlight of the elution pattern is that, as maturation proceeds, these subspecies exhibit a correlated increase in affinity toward IDA-Cu(II). This behavior is analyzed by a combination of physicochemical and molecular modeling techniques to assess the contribution of the two histidines present in chymotrypsins, at positions 40 and 57 on the protein surface. Catalytic His-57 features adequate surface accessibility to serve as a ligand to IDA-Cu(II), but its participation is clearly ruled out by specific chemical modification. In contrast, His-40, whose side chain is buried in the crystal structures of both zymogen and mature enzyme, surprisingly proves the most plausible candidate as an electron donor to IDA-Cu(II). This apparent conflict between histidine accessibility and their implication in IDA-Cu(II) recognition has been rationalized on the basis of their flexibility and/or hydrogen-bonding status, with the following outcome. First, histidine constitutes a useful reporter group for subtle protein conformational fluctuations. Second, static accessibility computation alone provides no unequivocal guideline as to whether a protein residue can serve as a ligand. Third, this study is the first to document the occurrence of a screening effect due to hydrogen bonding of an otherwise "accessible" histidine. A significant corollary to this finding would be that the catalytic histidine is rigidly entrapped in a remarkably strong hydrogen-bonding network, a situation that may pertain to mechanistic aspects of catalysis.


Subject(s)
Chymotrypsin/chemistry , Histidine/chemistry , Animals , Binding Sites , Cattle , Chelating Agents/metabolism , Chromatography, Affinity , Chymotrypsin/metabolism , Chymotrypsinogen/chemistry , Chymotrypsinogen/metabolism , Copper/metabolism , Crystallography, X-Ray , Histidine/metabolism , Hydrogen Bonding , Imino Acids/metabolism , Models, Molecular , Protein Conformation , Surface Properties
3.
Biochemistry ; 31(24): 5459-66, 1992 Jun 23.
Article in English | MEDLINE | ID: mdl-1610792

ABSTRACT

Site-directed mutagenesis in the active site of xylose isomerase derived from Actinoplanes missouriensis is used to investigate the structural and functional role of specific residues. The mutagenesis work together with the crystallographic studies presented in detail in two accompanying papers adds significantly to the understanding of the catalytic mechanism of this enzyme. Changes caused by introduced mutations emphasize the correlation between substrate specificity and cation preference. Mutations in both His 220 and His 54 mainly affect the catalytic rate constant, with catalysis being severely reduced but not abolished, suggesting that both histidines are important, but not essential, for catalysis. Our results thus challenge the hypothesis that His 54 acts as an obligatory catalytic base for ring opening; this residue appears instead to be implicated in governing the anomeric specificity. With none of the active site histidines acting as a catalytic base, the role of the cations in catalyzing proton transfer is confirmed. In addition, Lys 183 appears to play a crucial part in the isomerization step, by assisting the proton shuttle. Other residues also are important but to a lesser extent. The conserved Lys 294 is indirectly involved in binding the activating cations. Among the active site aromatic residues, the tryptophans (16 and 137) play a role in maintaining the general architecture of the substrate binding site while the role of Phe 26 seems to be purely structural.


Subject(s)
Actinomycetales/enzymology , Aldose-Ketose Isomerases , Carbohydrate Epimerases/genetics , Binding Sites , Carbohydrate Epimerases/chemistry , Carbohydrate Epimerases/metabolism , Catalysis , Genetic Engineering , Histidine/chemistry , Kinetics , Lysine/chemistry , Molecular Structure , Mutagenesis, Site-Directed , Phenylalanine/chemistry , Structure-Activity Relationship , Substrate Specificity , Tryptophan/chemistry , Xylose/metabolism
4.
Biochemistry ; 31(24): 5467-71, 1992 Jun 23.
Article in English | MEDLINE | ID: mdl-1610793

ABSTRACT

Aldose-ketose isomerization by xylose isomerase requires bivalent cations such as Mg2+, Mn2+, or Co2+. The active site of the enzyme from Actinoplanes missouriensis contains two metal ions that are involved in substrate binding and in catalyzing a hydride shift between the C1 and C2 substrate atoms. Glu 186 is a conserved residue located near the active site but not in contact with the substrate and not with a metal ligand. The E186D and E186Q mutant enzymes were prepared. Both are active, and their metal specificity is different from that of the wild type. The E186Q enzyme is most active with Mn2+ and has a drastically shifted pH optimum. The X-ray analysis of E186Q was performed in the presence of xylose and either Mn2+ or Mg2+. The Mn2+ structure is essentially identical to that of the wild type. In the presence of Mg2+, the carboxylate group of residue Asp 255, which is part of metal site 2 and a metal ligand, turns toward Gln 186 and hydrogen bonds to its side-chain amide. Mg2+ is not bound at metal site 2, explaining the low activity of the mutant with this cation. Movements of Asp 255 also occur in the wild-type enzyme. We propose that they play a role in the O1 to O2 proton relay accompanying the hydride shift.


Subject(s)
Actinomycetales/enzymology , Aldose-Ketose Isomerases , Carbohydrate Epimerases/metabolism , Magnesium/chemistry , Manganese/chemistry , Metalloproteins/metabolism , Binding Sites , Carbohydrate Epimerases/chemistry , Carbohydrate Epimerases/genetics , Catalysis , Cobalt/chemistry , Crystallography , Fructose/metabolism , Glucose/metabolism , Hydrogen-Ion Concentration , Kinetics , Metalloproteins/chemistry , Metalloproteins/genetics , Models, Molecular , Mutagenesis, Site-Directed , Protein Conformation , Structure-Activity Relationship , Water/chemistry , X-Ray Diffraction , Xylose/metabolism
5.
Biochemistry ; 31(10): 2690-702, 1992 Mar 17.
Article in English | MEDLINE | ID: mdl-1547210

ABSTRACT

D-Xylose isomerase (XI) is a heat-stable homotetrameric enzyme used in industry for the production of high-fructose corn syrups by isomerization of D-glucose into D-fructose. To carry out biochemical and structural studies of this enzyme and of its engineered variants, a rapid and convenient method of purification of recombinant Actinoplanes missouriensis XI produced in Escherichia coli has been developed. The availability of surface-accessible histidine residues allows adsorption of XI to immobilized metal-affinity chromatography (IMAC) columns. Knowledge of the physicochemical properties of this enzyme is shown to further warrant rational modifications in the composition of the chromatographic solvents so as to achieve high selectivity in both its interaction with and its elution from a copper-loaded Chelating Sepharose Fast Flow column, an agarose-based matrix derivatized with iminodiacetic acid (IDA) groups. Purification of XI to homogeneity can thus be accomplished in a single chromatographic step starting from crude cell lysates. IDA-Cu(II)-IMAC proves convenient, fast, and reproducible. Moreover, this method is gentle to and hence suitable for mutant enzymes with decreased stability. Its disadvantage is that XI is purified in an inactive form due to inhibition by scavenged Cu2+. This handicap is however easily overcome by means of a polishing step by chromatography on Mono-Q in the presence of the chelator, EDTA. Site-directed mutants have been constructed to assess the role of surface amino acid residues in the IMA recognition event. Substitution of lysine for histidine 41 results in a mutant with near wild-type properties. Yet, this mutation is shown to completely abolish adsorption to IDA-Cu(II). This finding is analyzed in relation to the structural surface properties of the XI enzyme to provide direct evidence for the implication of histidine 41 as the predominant protein ligand to IDA-Cu(II) in IMAC.


Subject(s)
Aldose-Ketose Isomerases , Carbohydrate Epimerases/isolation & purification , Histidine/genetics , Carbohydrate Epimerases/genetics , Cations, Divalent , Chromatography, Affinity , Chromatography, High Pressure Liquid , Copper , Electrophoresis, Polyacrylamide Gel , Enzyme Stability , Escherichia coli/enzymology , Gene Expression , Hot Temperature , Imino Acids/metabolism , Models, Molecular , Mutagenesis, Site-Directed , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , X-Ray Diffraction
6.
Biochemistry ; 31(8): 2239-53, 1992 Mar 03.
Article in English | MEDLINE | ID: mdl-1540579

ABSTRACT

Site-specific substitutions of arginine for lysine in the thermostable D-xylose isomerase (XI) from Actinoplanes missouriensis are shown to impart significant heat stability enhancement in the presence of sugar substrates most probably by interfering with nonenzymatic glycation. The same substitutions are also found to increase heat stability in the absence of any sugar derivatives, where a mechanism based on prevention of glycation can no longer be invoked. This rather conservative substitution is moreover shown to improve thermostability in two other structurally unrelated proteins, human copper, zinc-superoxide dismutase (CuZnSOD) and D-glyceraldehyde-3-phosphate dehydrogenase (GAPDH) from Bacillus subtilis. The stabilizing effect of Lys----Arg substitutions is rationalized on the basis of a detailed analysis of the crystal structures of wild-type XI and of engineered variants with Lys----Arg substitution at four distinct locations, residues 253, 309, 319, and 323. Molecular model building analysis of the structures of wild-type and mutant CuZnSOD (K9R) and GAPDH (G281K and G281R) is used to explain the observed stability enhancement in these proteins. In addition to demonstrating that even thermostable proteins can lend themselves to further stability improvement, our findings provide direct evidence that arginine residues are important stabilizing elements in proteins. Moreover, the stabilizing role of electrostatic interactions, particularly between subunits in oligomeric proteins, is documented.


Subject(s)
Aldose-Ketose Isomerases , Arginine/chemistry , Enzyme Stability , Arginine/genetics , Carbohydrate Epimerases/chemistry , Carbohydrate Epimerases/genetics , Cloning, Molecular , Enzyme Activation , Glyceraldehyde-3-Phosphate Dehydrogenases/chemistry , Glyceraldehyde-3-Phosphate Dehydrogenases/genetics , Glycosylation , Hot Temperature , Humans , Lysine/chemistry , Lysine/genetics , Mutagenesis, Site-Directed , Protein Conformation , Protein Engineering/methods , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Superoxide Dismutase/chemistry , Superoxide Dismutase/genetics , X-Ray Diffraction
7.
Biotechnology (N Y) ; 9(8): 738-42, 1991 Aug.
Article in English | MEDLINE | ID: mdl-1367634

ABSTRACT

We have engineered recombinant glucose isomerase (GI) from Actinoplanes missouriensis by site-directed mutagenesis to enhance its thermal stability in both the soluble and immobilized forms. Substitution of arginine for lysine at position 253, which lies at the dimer/dimer interface of the GI tetramer, produced the largest stabilization under model industrial conditions. We discuss our results in terms of a model in which chemical glycation of lysines by sugars in the industrial corn syrup substrate represents a major pathway of destabilization.


Subject(s)
Aldose-Ketose Isomerases , Carbohydrate Epimerases/chemistry , Carbohydrate Epimerases/genetics , Cloning, Molecular , Enzymes, Immobilized , Escherichia coli/genetics , Gram-Positive Bacteria/enzymology , Gram-Positive Bacteria/genetics , Hydrogen-Ion Concentration , Models, Molecular , Mutagenesis , Protein Engineering , Solutions , Thermodynamics
8.
J Biol Chem ; 262(13): 5951-6, 1987 May 05.
Article in English | MEDLINE | ID: mdl-3571243

ABSTRACT

The kinetics of assembly have been monitored spectrophotometrically for normal and variant human oxyhemoglobins in 0.1 M Tris, 0.1 M NaCl, 1 mM Na2EDTA, pH 7.4, at 21.5 degrees C. Oxyhemoglobin versus oxy chain static difference spectra were performed and revealed subtle but significant absorption changes in both the visible and Soret regions. Kinetic experiments were performed by rapidly mixing equivalent (in heme) concentrations of alpha and beta A chains and following the change in absorbance at 583 nm with time. Over a protein concentration range of 10-100 microM in heme prior to mixing, these time courses were homogeneous and followed first-order kinetics, yielding a value of 0.069 s-1 for the apparent rate constant of dissociation of oxygenated beta A chain tetramers. Under these conditions, the overall assembly of oxyhemoglobins S (beta 6Glu----Val) and N-Baltimore (beta 95Lys----Glu) were also governed by the rates of dissociation of their respective oxygenated beta S and beta N-Baltimore chain tetramers with the apparent first-order rate constants of 0.044 and 0.15 s-1, respectively. In the Soret region, the alpha, beta monomer combination reaction could be observed if the protein concentration (heme basis) was lowered and if protein nonequivalency (beta chain exceeded alpha chain concentration) mixing experiments were performed. A kinetic oxyhemoglobin A, oxy-alpha, oxy-beta A monomer difference spectrum could be generated, and simple second-order kinetics were observed (415 nm) yielding rate constants of 2.3, 3.3, and 4.8 X 10(5) M-1 s-1 for the assembly of oxyhemoglobins S, A, and N-Baltimore, respectively. To our knowledge, this is the first kinetic study to reveal significant differences between the rate of association of alpha and beta monomers of hemoglobin A and those of two distinctly charged hemoglobin variants.


Subject(s)
Oxyhemoglobins/metabolism , Humans , Kinetics , Macromolecular Substances , Mathematics , Spectrophotometry
9.
J Biol Chem ; 261(11): 5222-8, 1986 Apr 15.
Article in English | MEDLINE | ID: mdl-3957922

ABSTRACT

We have investigated the effect of surface charge on the rate of assembly of alpha beta dimers of human hemoglobin A: alpha + beta k a----alpha beta. Heme intact beta A subunits were compared with four mutant subunits which differ by integral units of charge: beta N(Lys-95----Glu) (2-); beta J(Gly-16----Asp) (1-); beta S(Glu-6----Val) (1+); beta C(Glu-6----Lys) (2+). Subunit competition experiments were performed as follows. Varying amounts of 3H-labeled alpha A subunits were added to a mixture containing equal amounts of beta A and beta X subunits so that alpha/(beta A + beta X) ranged from 0.05-1.0. The reconstituted 3H-labeled Hbs A and X were analyzed by ion-exchange high pressure liquid chromatography as well as by gel electrofocusing and fluorography. Under the solvent conditions employed (10 mM PO4(Na), pH 7.0, 0 degrees C) a predominant proportion of the beta subunits was monomeric. Therefore, the ratio of Hb X to Hb A formed from subunit reconstitution when alpha/(beta X + beta A) approached zero provides a direct measure of the relative rates of monomer combination: kXa/kAa. The experimental values of this ratio decreased monotonically with the overall charge of the variant beta subunit: beta N = 2.6; beta J = 1.5; beta S = 0.41; beta C = 0.13. In contrast surface charge had no significant effect on the rate of dissociation of the alpha beta dimer: alpha beta kd----alpha + beta. At pH 8.0, where the alpha chains lack a net surface charge, they combined equally well to beta A and beta C chains. These experiments are consistent with a two-step mechanism, alpha + beta in equilibrium (alpha...beta) in equilibrium alpha beta, where the oppositely charged monomers diffuse together under the influence of their mutual electrostatic interaction to form a nonspecifically bound encounter complex [alpha...beta] that undergoes a surface charge-independent rearrangement to form the stable dimer.


Subject(s)
Hemoglobins , Chromatography, High Pressure Liquid , Electrochemistry , Globins , Hemoglobin A , Hemoglobin C , Hemoglobin J , Hemoglobins, Abnormal , Humans , Macromolecular Substances , Surface Properties
10.
J Biol Chem ; 261(3): 1111-5, 1986 Jan 25.
Article in English | MEDLINE | ID: mdl-2418013

ABSTRACT

Dissociation of alpha beta and alpha gamma dimers of human hemoglobins (Hb) A and F into monomers was studied by alpha chain exchange (Shaeffer, J. R., McDonald, M. J., Turci, S. M., Dinda, D. M., and Bunn, H. F. (1984) J. Biol. Chem. 259, 14544-14547). Unlabeled carbonmonoxy-Hb A was incubated with trace amounts of preparatively purified, native, 3H-alpha subunits in 10 mM sodium phosphate, pH 7.0, at 25 degrees C. At appropriate times, free alpha monomers were separated from Hb A tetramers by anion exchange high performance liquid chromatography. Transfer of radioactivity from the alpha chain pool into Hb A was measured, yielding a first order dimer dissociation rate constant, k2 = (3.2 +/- 0.3) X 10(-3) h-1. The Arrhenius plot of k2 was linear between 7 and 37 degrees C, yielding an enthalpy of activation of 23 kcal/alpha beta dimer. As the chloride concentration was raised from 0 to 0.2 M, the dissociation rate increased 3-fold; with higher salt concentrations, however, the rate gradually returned to baseline. This rate was not altered by raising the pH from 6.5 to 7.2, but as pH was further raised to 8.4, kappa 2 increased about 3-fold. Hb F, which has an increased stability at alkaline pH, dissociated into alpha and gamma monomers 3 times more slowly than Hb A. Moreover, the dimer-monomer dissociation of Hb F was characterized by a significantly reduced pH dependence. These results demonstrate that both alpha beta and alpha gamma dimers of Hb A and Hb F dissociate reversibly into monomers under physiologic conditions. The differential pH dependence for dimer dissociation between Hb A and Hb F suggests that specific amino acid replacement at the alpha 1 gamma 1 interface confers increased resistance to alkaline denaturation.


Subject(s)
Fetal Hemoglobin/metabolism , Hemoglobin A/metabolism , Chlorides/pharmacology , Hydrogen-Ion Concentration , Kinetics , Macromolecular Substances , Mathematics , Temperature , Thermodynamics
11.
J Biol Chem ; 258(19): 11582-9, 1983 Oct 10.
Article in English | MEDLINE | ID: mdl-6619130

ABSTRACT

Receptor-estradiol complexes (RE2) formed at 0 degree C in hypotonic buffers bind poorly to nuclei (nonactivated state); their sedimentation coefficient in low or high salt sucrose density gradients (SDG) is 8 S or 4 S, respectively (untransformed state); estradiol dissociates from untransformed RE2 at a high rate (k-1 = 0.44 min-1). Brief heating (28 degrees C, 30 min) induces activation (increased binding of RE2 to nuclei and polyanions), transformation (formation of receptor dimers which sediment at 6 S in 0.4 M KCl/borate SDG) and RE2 transition into a state from which E2 dissociates at a lower rate (k-2 = 8 X 10(-3) min-1). We have examined the role of arginyl residues in the above changes in receptor properties. It is well established (Patthy, L., and Smith, E. L. (1975) J. Biol. Chem. 250, 557-564; 565-569) that 1,2-cyclohexanedione (1,2-CHD) is a highly specific arginine-modifying agent; in borate buffer at 28 degrees C, but not at 0 degrees C, peptide arginyls are covalently modified. RE2 complexes heated in the presence of 1,2-CHD (50 mM) bind poorly to nuclei; 1,4-cyclohexamedione and 1,2-cyclohexanediol had no effect. This reagent also prevents the temperature-induced transition of RE2 into a state with slow E2 dissociation rates although it does not interfere with heat transformation (formation of 6 S dimer). Modification of heat-activated and transformed RE2 by 1,2-CHD causes a loss in receptor binding to nuclei and alters RE2 from a state with slow into a state with fast E2 dissociation rates, although the receptor remains unaltered in the transformed 6 S state. At 0 degree C, i.e. in the absence of covalent arginyl modification, 1,2-CHD promotes dissociation of the 8 S aggregate into 4.6 S subunits which bind to nuclei to the same extent as heat-transformed control RE2. Heating of the molybdate-stabilized 8 S receptor in the presence of 1,2-CHD yields a nonactivated 8 S receptor (4.6 S on high salt SDG); removal of molybdate and unreacted 1,2-CHD by gel filtration at 0 degree C followed by exposure to high ionic strength causes 8 S to 4 S dissociation; these 4 S subunits, however, do not bind to nuclei, suggesting that their nucleotropic domain was accessible to 1,2-CHD modification while the receptor was in the aggregated 8 S state. It is proposed that the nuclear binding site of the estrogen receptor contains arginyl residues. Furthermore, a distinct set of arginyl residues appears to be related to the estrogen-binding domain; its integrity is required for the heat-induced formation and maintenance of the RE2 state with slow E2 dissociation.(ABSTRACT TRUNCATED AT 400 WORDS)


Subject(s)
Arginine , Cell Nucleus/metabolism , Estradiol/metabolism , Receptors, Estrogen/metabolism , Uterus/metabolism , Animals , Cattle , Cyclohexanones/pharmacology , Cytosol/metabolism , Female , Hot Temperature , Kinetics , Receptors, Estrogen/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL