Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Trace Elem Med Biol ; 80: 127286, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37634345

ABSTRACT

BACKGROUND: Although luteolin has been confirmed as potent anticancer agent, its potential application as therapeutic is limited by its water solubility. To overcome this shortcoming nanoparticle technology approach was applied. Owing to their proven low toxicity and the possibility to be easily functionalized gold nanoparticles (AuNP) were the nanosystem of choice used in this study. Novel luteolin capped gold nanoparticles (AuNPL) were synthesized and their anticancer effect towards human cervical adenocarcinoma HeLa cells was investigated in vitro. METHODS: AuNPL were synthesized by reducing chloroauric acid by trisodium citrate with subsequent addition of luteoline during synthesis and their physicochemical characterization was done. AuNPL cytotoxicity against HeLa, human malignant melanoma A375, and normal human keratinocytes HaCaT cells was tested by MTT cell survival assay, and their IC50 values were determined. The capability of AuNPL to induce cell cycle arrest and apoptosis in HeLa cells were demonstrated by flow cytometry. The antioxidant activity of AuNPL was assessed by DPPH· and ABTS·+ scavenging assays. Cytoprotective properties of AuNPL towards HaCaT cells were examined by measuring the physiological and H2O2 induced intracellular reactive oxygen species (ROS) levels using flow cytometry. Also, genotoxicity of AuNPL in HaCaT cells was investigated by the single cell alkaline comet assay. RESULTS: Spherical AuNPL, stable in aqueous solution up to six months at 4 °C were obtained in the synthesis. The selectivity in the cytotoxic action of AuNPL on HeLa and A375 cancer cells compared with their cytotoxicity on normal keratinocytes HaCaT was observed. AuNPL exerted their cytotoxic activity against HeLa cells through accumulation of the cells in the subG1 phase of the cell cycle, inducing the apoptotic cell death mediated by the activation of caspase-3 - 8, and - 9. AuNPL antioxidative potential was confirmed by DPPH· and ABTS·+ scavenging assays. IC50 concentration of AuNPL exerted cytoprotective effect against HaCaT cells by the significant reduction of the physiological intracellular ROS level. Additionally, AuNPL were shown as more cytoprotective towards HaCaT cells then luteolin due to the more successful elimination of H2O2 induced intracellular ROS. Moreover, nontoxic concentrations of AuNPL did not cause considerable DNA damage of HaCaT cells, indicating low genotoxicity of the nanoparticles. CONCLUSION: Synthesized AuNPL showed selective cytotoxic activity against HeLa cells, while being nontoxic and cytoprotective against HaCaT cells. The observed findings encourage further investigation of AuNPL as a promising novel anticancer agent.


Subject(s)
Adenocarcinoma , Antineoplastic Agents , Metal Nanoparticles , Humans , HeLa Cells , Luteolin/pharmacology , Luteolin/chemistry , Gold/pharmacology , Gold/chemistry , Reactive Oxygen Species/metabolism , Hydrogen Peroxide/pharmacology , Metal Nanoparticles/chemistry , Apoptosis , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antioxidants/pharmacology
2.
Mater Sci Eng C Mater Biol Appl ; 99: 394-404, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30889714

ABSTRACT

Amorphous, medical grade poly(d,l-lactic acid) (PLA) and poly(d,l-lactic-co-glycolic acid) (PLGA) were used to develop systems for controlled release of a natural bioactive substance - thymol. Supercritical carbon dioxide (scCO2) was successfully used both as an impregnation medium for thymol incorporation into the polymer matrix and a foaming agent in a single-step batch process. Impregnation of samples using low to moderate scCO2 densities (273 kg/m3 and 630 kg/m3) and short processing times (2 h and 4 h) enabled thymol loading of 0.92%-6.62% and formation of microcellular foams upon system depressurization. Thymol effect on structural and thermal properties on foamed samples was proven by FTIR and DSC. The effect of CO2 under elevated pressure on the neat polymers was analysed by high pressure DSC. Foaming of polymers with lower molecular weight by CO2 of higher density yielded foams with smaller pores. All tested foams released thymol in a controlled manner in phosphate buffered saline (PBS) at 37 °C within 3 to 6 weeks. Higher loading and lower cell density favoured thymol release rate, while its concentration in PBS for the tested period depended on foam interaction with the medium. Representative PLGA foam sample with the highest thymol loading (6.62%) showed controlled thymol release within 72 h in mediums having pH values from 1.1 to 7.4.


Subject(s)
Carbon Dioxide/chemistry , Drug Liberation , Polyesters/chemical synthesis , Polylactic Acid-Polyglycolic Acid Copolymer/chemical synthesis , Thymol/pharmacology , Kinetics , Polyesters/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Porosity , Pressure , Spectroscopy, Fourier Transform Infrared , Time Factors , Transition Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...