Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 938: 173611, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38815832

ABSTRACT

The study provides a descriptive understanding of when fish (Cyprinus carpio model) are the source or sink of phosphorus. Dissolved reactive phosphorus (DRP; PO4-P) losses (51.1 ± 5.9 % of intake-P) increase at excess of bioavailable P (>0.83 g 100 g-1 dry matter, DM fed) or when food (digestible) N:P mass ratio (≤4.4:1) approaches organismal storage threshold (~4:1). This is known, however, even at a sub-threshold food P content (0.57 g 100 g-1 DM) and food N:P mass ratio (7.3:1), DRP losses (57.8 ± 4.5 % of intake-P) may be extraordinary if two indispensable amino acids are biologically insufficient (lysine ≤1.43 g, methionine ≤0.39 g 100 g-1 DM fed). Given that methionine and lysine are sufficient, DRP losses cease (≈0 %) and even some P from water is absorbed, given there is support from non-protein energy (NPE). Insufficient NPE (<180 kcal 100 g-1 DM fed) may drive DRP losses (81.6 ± 4.3 % of intake-P) beyond expected levels (46-59 % of intake-P) at a given food P content (0.91 g 100 g-1 DM). Natural food seldom fulfills low P, high lysine + methionine, and high NPE contents simultaneously, thus keeping fish in a perpetual P recycling for algae (scaleless carp > scaly carp). Such P recycling ceases only during basal metabolism. During feeding state, the richness of lysine + methionine bound N and lipid + carbohydrate bound C in the food base may enhance the fishes' threshold of P storage. P storage can be diminished when they are insufficient. We show that for fish, the decision of P recycling or not recycling (for algae) may change based on the supply of specific fractions of N or C from the food web or metabolic variations (basal metabolism, presence of scales). NOVELTY STATEMENT: The ecological stoichiometry theory is better connected to fish nutritional bioenergetics for better understanding and biomanipulation of eutrophication processes.

2.
Sci Total Environ ; 927: 172105, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38556011

ABSTRACT

A digestibility enhancing effect of natural food on stomachless fish model (Cyprinus carpio) was verified by fluorogenic substrate assays of enzymatic activities in experimental pond carp gut flush and planktonic food over a full vegetative season. Then compared with size-matched conspecific grown artificially (tank carp) and an advanced omnivore species possessing true stomach (tilapia, Oreochromis niloticus). Results suggested activities of digestive enzymes (except amylolytic) were significantly higher in pond carp (p ≤ 0.05) than in the size-matched tank carp. Even compared to tilapia, pond carp appeared superior (p < 0.05; proteolytic or chitinolytic activities) or comparable (p > 0.05; phosphatase or cellulolytic activities). Amylolytic, chitinolytic, and phosphatases activities in pond carp gut significantly increased (p ≤ 0.01) over season. Several orders-of-magnitude higher enzymatic activities were detected in planktonic natural food than expressed in carp gut. Amino acid markers in planktonic food revealed a higher share of zooplankton (microcrustaceans), but not phytoplankton, synchronized with higher activities of complex polysaccharide-splitting enzymes (cellulolytic and chitinolytic) in fish gut. Periods of clear water phase low in chlorophyll-a and nutrients, but high in certain zooplankton (preferably cladocerans), may create a synergistic digestibility effect in pond carp. We conclude aquatic ecosystem components (natural food, water, microbiota) enhance fishes' hydrolyzing capabilities of C/N/P macromolecules and even their complex polymers such as cellulose, chitin, and maybe phytate (to be validated), to the extent that being stomachless is not an issue. Aquatic nutritional ecologists may consider that laboratory-based understandings of digestibility may underestimate digestion efficiency of free-ranging fish in ponds or lakes.


Subject(s)
Carps , Ecosystem , Animals , Carps/physiology , Carps/metabolism , Digestion/physiology , Plankton/physiology , Zooplankton/physiology , Phytoplankton/physiology
3.
Environ Toxicol Pharmacol ; 105: 104341, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38072218

ABSTRACT

Aquaponics is a method of producing food in a sustainable manner through the integration of aquaculture and hydroponics, which allows simultaneous cultivation of fish and economic crops. The use of natural fungicides are crucial to the sustainable control of diseases in aquaponics. We assessed the potential impacts of natural fungicides, such as clove oil and lecithin, as well as a synthetic fungicide, tebuconazole, following foliar application in aquaponics. This study examined the runoff rates of the fungicides in decoupled aquaponics, and the subsequent effects of the runoffs on nitrification processes and Nile tilapia (Oreochromis niloticus). The runoffs of the foliar-applied fungicides, clove oil, lecithin, and tebuconazole, were detected in aquaponics water at a percentage runoff rate of 0.3 %, 2.3 %, and 0.3-0.8 % respectively. In the biofilter, lecithin altered the ammonium levels by increasing ammonium-nitrogen levels by 7 mg L-1, 6 h post application. Clove oil, on the other hand, showed no significant effect on ammonium, nitrite, and nitrate-nitrogen. Similarly, the toxicity test showed that eugenol had no significant effects on the hematological, biochemical and antioxidative activities of O. niloticus. Conversely, tebuconazole exhibited significant and persistent effects on various biochemical parameters, including lactate, albumin, and total protein, as well as hematological parameters like hemoglobin and MCH. The use of lecithin and tebuconazole should only be limited to decoupled aquaponics.


Subject(s)
Ammonium Compounds , Cichlids , Fungicides, Industrial , Animals , Nitrification , Fungicides, Industrial/toxicity , Clove Oil , Lecithins , Cichlids/metabolism , Aquaculture/methods , Nitrogen/analysis
4.
Pest Manag Sci ; 80(3): 1065-1075, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37842745

ABSTRACT

BACKGROUND: Sweet potato whitefly (Bemisia tabaci) is one of the most destructive pests to an extensive range of crops and vegetables. Pesticide-dependent management programs have led to severe health problems, including pesticide poisoning and cancer in human beings, as well as pesticide resistance in insect pests. Entomopathogenic fungi (EPF) are considered safe and highly effective against many pests. Therefore, identifying the pathogenicity and virulence of EPFs against Bemisia tabaci is a valuable addition to the management of their infestations. In this study, we investigated the efficacy of conidia suspensions of Aschersonia aleyrodis, Isaria fumosorosea, Beauveria bassiana, and Akanthomyces muscarius (= Lecanicillium muscarium) against nymphal stages of Bemisia tabaci in cucumber seedlings under both optimal and suboptimal conditions. RESULTS: All of the EPFs demonstrated significant ovicidal effects, with the highest cumulative mortalities observed in Aschersonia aleyrodis (96.46%) and I. fumosorosea-treated (94.60%) seedlings against host eggs and crawlers. Similarly, in the L4-instars experiment, Aschersonia aleyrodis and I. fumosorosea were the most efficient, resulting in cumulative mortalities of 94.82% and 94.75%, respectively. However, Bemisia tabaci cumulative mortalities on seedlings treated with Akanthomyces muscarius (78.36%) and Beauveria bassiana (85.90%) were also significantly different from untreated seedlings (7.10%). Under suboptimal relative humidity (RH) conditions (≤ 45% RH), Aschersonia aleyrodis exhibited greater tolerance to harsh conditions, causing a significantly higher infection rate in L1-L2 nymphs (~92%) compared to the approximately 32% infected young nymphs observed in I. fumosorosea-treated seedlings. CONCLUSION: All the selected EPF were more effective against the young nymphal instars. Our results also highlight the efficacy of Aschersonia aleyrodis under suboptimal conditions. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.


Subject(s)
Beauveria , Hemiptera , Hypocreales , Ipomoea batatas , Pesticides , Animals , Humans , Humidity , Pest Control, Biological/methods , Pesticides/pharmacology , Nymph
5.
NPJ Sci Food ; 7(1): 48, 2023 Sep 09.
Article in English | MEDLINE | ID: mdl-37689755

ABSTRACT

EPA + DHA intake in land-locked central Europe (CE) is barely fulfilled. Imported marine fish/farmed salmonids are likely the backbone of an ailing EPA + DHA security. Supplementing with captured marine fish oil capsules (~0.5 g up to 1.6 g CO2-eq. mg EPA + DHA-1) could be comparable in GHG emissions with fish consumption itself (~1 g to as low as 0.6 g CO2-eq. mg EPA + DHA-1). But synergistic benefits of EPA + DHA intake by consuming fish protein need consideration too. Taking semi-intensive pond carp and intensively farmed salmon as models, we analyzed footprint, eco-services, and resource use efficiency perspectives of achieving EPA + DHA security in a CE region. Despite a lower production footprint, pond-farmed fish greatly lag in EPA + DHA supply (carp 101-181 mg 100 g-1 < salmon 750-1300 mg 100 g-1). It doubles-to-quadruples footprint 'per mg' of EPA + DHA: nitrogen (carp 18.3 > salmon 8.7 mg N), phosphorus (carp 6.8 > salmon 1.6 mg P), and climate change (carp 1.84 > salmon 0.8 g CO2-eq.). With enhancements in pond carp (>300 mg EPA + DHA 100 g-1), these differences may cease to exist. Harnessing EPA + DHA bioaccumulation pathways active in ponds, finishing feeding strategies, and polyculture, the EPA + DHA content in pond fish may be increased. Ecosystem services with EPA + DHA mining from pond food web or high EPA + DHA output-to-input ratio (pond carp 1-200 > RAS salmon 0.75) make ponds an eco-efficient system. As fish consumption in CE must improve, pond-farmed fish would be needed to complement (but not substitute) salmonid/marine fish/oil capsules consumption. Achieving EPA + DHA security with minimum pressure on the environment or global resources.

6.
Heliyon ; 9(8): e18979, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37609392

ABSTRACT

The use of hydroponics to cultivate economic crops is an emerging agricultural practice in Nigeria. There is, however, a paucity of information on the economic viability and valuation of the production systems. This study investigated hydroponics' profitability and economic viability under small- and medium-scale production systems. The economic viability of ten hydroponic farms were evaluated using the financial metrics: net present value (NPV), internal rate of return (IRR), benefit-cost ratio (BCR), and sensitivity analysis. Sensitivity analysis based on positive and negative changes in the running cost and gross annual revenue was adopted to measure the robustness of the production method. The positive NPVs of the small-scale farmer (€42,895) and medium-scale farmer (€331,465) at a 15% discount rate show that both production scales are economically viable. The ten-year IRR of both production scales was about 83%. Similarly, the BCR showed that both the small-scale farmers (5.07) and the medium-scale farmers (4.91) are significantly profitable. In the sensitivity analysis, the small-scale farmers were more sensitive to recurrent 5% changes in the running cost at the 13% threshold. On the other hand, medium-scale farmers were less sensitive with a threshold value of 58.4%. Similarly, small-scale farmers are more sensitive to a 15% reduction in the gross annual revenue, with a negative net return of -€956. It is imperative to state that, though starting an investment in hydroponics requires a high initial investment, medium-scale farmers would be less sensitive to changes in the running cost of production in the face of uncertainties.

7.
Foods ; 12(15)2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37569097

ABSTRACT

This study aimed to investigate the effects of galacto-oligogalactose (GOS) glycosylation on the structural and functional properties of fish gelatin (FG). Results showed that with the increase of glycosylation time, grafting degree and browning increased, and new protein bands with increased molecular weight were observed by SDS-PAGE. Structural analysis showed that glycosylation reduced intrinsic fluorescence intensity and increased surface hydrophobicity of FG. FTIR analysis showed α-helix content decreased while random coil content increased in glycosylated FG. Emulsion activity index and emulsion stability index along with foam activity and foam stability were significantly elevated in GOS-4 and GOS-8, but FG glycosylated longer than 12 h exhibited less pronounced improvement. Glycosylated FG showed lower gel strength than control. The results indicate that moderate glycosylation could be applied to improve interfacial properties of FG.

9.
Fish Physiol Biochem ; 48(4): 899-910, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35697911

ABSTRACT

Pikeperch (Sander lucioperca) is a highly profitable commercial species whose economic value has greatly increased in the last decade. As in other species, the quality of spermatozoa in this species is a principal feature inherent in fertilization success and efficient natural and artificial reproduction. The capacity of fish spermatozoa to be activated and tolerate environmental changes (in osmolality, ion composition, external pH, temperature, etc.) during the motility period contributes to fertilization success. In this study, we investigated the effects of environmental osmolality and ion composition on spermatozoa motility. To determine if the activation mechanism is affected by sperm quality parameters, we measured semen characteristics such as semen volume, spermatozoa concentration, seminal fluid osmolality and ion composition, and spermatozoa lipid composition. An additional parameter of sperm quality reflecting spermatozoa osmoresistance, the swelling rate, was measured by the nephelometry method. We detected that sperm samples with the highest content of palmitic (C16:0) and palmitoleic (C16:1) acids showed the lowest motility activation under the studied conditions, suggesting that these fatty acids are possible markers for the determination of spermatozoa quality in fish. Our results show that pikeperch spermatozoa can be activated under different osmotic conditions and that cell swelling always accompanies motility. However, spermatozoa sustain their volume under hypotonic conditions when motility is not initiated, suggesting that pikeperch spermatozoa activation is mainly controlled by ion composition rather than the osmolarity of the surrounding medium.


Subject(s)
Perches , Semen , Animals , Male , Perches/physiology , Semen/physiology , Semen Analysis/veterinary , Sperm Motility/physiology , Spermatozoa/physiology
10.
N Biotechnol ; 70: 9-18, 2022 Sep 25.
Article in English | MEDLINE | ID: mdl-35395431

ABSTRACT

Future food systems aim to achieve improved resource use efficiency and minimized environmental footprint through a circular bioeconomy-based approach. Aquaponics is a hallmark of such circular food production. The image of a circular nutrient utilization efficiency in aquaponics is often weakened by the daily use of additional inorganic fertilizers in such systems. As circular bioeconomy greatly emphasizes developing bio-based solutions, the presented novel inventory 'TilaFeed' and its associated utility tools is a step towards achieving more circular nutrient utilization and bioeconomy in future aquaponics. Through the formulation of tailored fish feed that is compatible with aquaponic systems' needs (e.g. plant nutrient requirement, mineralization efficiency of microbial sludge digesters), the objectives of TilaFeed are (i) to solve nutrient constraints in aquaponic systems, both for fish and plants; (ii) to avoid or strongly limit artificial fertilizer use in aquaponics by smartly tailored aquafeeds; and (iii) to equip system managers with decision-making tools for improved nutrient planning of their aquaponic systems. TilaFeed is a bio-based inventory. It integrates material (nutrient) flow information from feed to fish (in-vivo nutrient partitioning, forms of excretion) to environment (in-situ nutrient loading, nutrient forms) and primary producers (mineralization by microbes, available nutrients to plants). Based on TilaFeed-Model, feed for future aquaponics may be more precisely formulated with the principle that nutrients are not only a resource for fish, but excreted nutrients from fish (feed) also fertilize the microbes and plants.


Subject(s)
Aquaculture , Nutrients , Animals , Aquaculture/methods , Fishes , Plants , Sewage
11.
Genes (Basel) ; 13(4)2022 04 15.
Article in English | MEDLINE | ID: mdl-35456508

ABSTRACT

The zebrafish (Danio rerio) genome contains a single gene fads2 encoding a desaturase (FADS2) with both Δ6 and Δ5 activities, the key player in the endogenous biosynthesis of long-chain polyunsaturated fatty acids (LC-PUFAs), which serve essential functions as membrane components, sources of energy and signaling molecules. LC-PUFAs include the precursors of eicosanoids and are thus predicted to be indispensable molecules for reproductive health in virtually all vertebrates. In mice, an amniotic vertebrate, fads2 deletion mutants, both males and females, have been confirmed to be sterile. In anamniotic vertebrates, such as fish, there is still no information available on the reproductive (in)ability of fads2 mutants, although zebrafish have become an increasingly important model of lipid metabolism, including some aspects of the generation of germ cells and early embryonic development. In the present study, we apply the CRISPR/Cas9 genome editing system to induce mutations in the zebrafish genome and create crispants displaying a degree of fads2 gene editing within the range of 50-80%. Focusing on adult G0 crispant females, we investigated the LC-PUFA profiles of eggs. Our data suggest an impaired pathway of the LC-PUFA biosynthesis of the ω6 and ω3 series in the first-rate limiting steps of the conversion of linoleic acid (LA) into γ-linolenic acid (GLA), and α-linolenic acid (ALA) into stearidonic acid (SDA), respectively, finally resulting in bad-quality eggs. Our data suggest the existence of an alternative Δ8 pathway, which bypasses the first endogenous LC-PUFA biosynthetic step in zebrafish in vivo, and suggest that the zebrafish bifunctional FADS2 enzyme is actually a trifunctional Δ6/Δ5/Δ8 desaturase.


Subject(s)
Fatty Acid Desaturases , Zebrafish , Animals , Fatty Acid Desaturases/genetics , Fatty Acids , Female , Gene Knockout Techniques , Male , Mice , Mice, Knockout , Reproduction/genetics , Zebrafish/genetics , Zebrafish/metabolism
12.
J Fish Biol ; 100(4): 894-908, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35195903

ABSTRACT

The absence of a controlled diet is unfortunate in a promising model organism for ageing, the turquoise killifish (Nothobranchius furzeri Jubb, 1971). Currently captive N. furzeri are fed bloodworms but it is not known whether this is an optimal diet. Replacing bloodworms with a practical dry feed would reduce diet variability. In the present study, we estimated the nutritional value of the diet ingested by wild fish and determined the fish-body amino acid profile as a proxy for their nutritional requirements. We compared the performance of fish fed four commercial feeds containing 46%-64% protein to that achieved with bloodworms and that of wild fish. Wild fish target a high-protein (60%) diet and this is supported by their superior performance on high-protein diets in captivity. In contrast, feeds for omnivores led to slower growth, lower fecundity and unnatural liver size. In comparison to wild fish, a bloodworm diet led to lower body condition, overfeeding and male liver enlargement. Out of the four dry feeds tested, the fish fed Aller matched wild fish in body condition and liver size, and was comparable to bloodworms in terms of growth and fecundity. A starter feed for carnivorous species appears to be a practical replacement for bloodworms for N. furzeri. The use of dry feeds improved performance in comparison to bloodworms and thus may contribute to reducing response variability and improving research reproducibility in N. furzeri research.


Subject(s)
Cyprinodontiformes , Fundulidae , Aging , Animals , Carnivory , Cyprinodontiformes/physiology , Fundulidae/physiology , Male , Reproducibility of Results
13.
Compr Rev Food Sci Food Saf ; 21(2): 1383-1408, 2022 03.
Article in English | MEDLINE | ID: mdl-35068032

ABSTRACT

Freezing methods have evolved over the last 30 years. This review states the effect of various freezing methods on the quality of fish and seafood. Freezing temperatures, freezing, and frozen storage temperatures were also analyzed and reviewed. The changes in the ice crystal, protein, and lipid affect the fish quality and nutritional value during freezing and frozen storage. Freezing methods when combined with various additives or preprocessing approaches help improve the efficacy of freezing and frozen storage. Several experimental or emerging methods also have positive effects on the products' quality. According to the metadata reanalysis of quality markers, freshly frozen fish using different freezing methods may vary much in terms of ice diameter, but not others. High pressure freezing or immersion freezing-derived fish retains the best quality through frozen storage. More data are required on freezing methods (electrical-assisted freezing, microwave-assisted freezing, magnetic-assisted freezing, radiofrequency-assisted freezing, and the commercial's application and investment should be considered in the future. This review sheds light on finding a balanced initial shear force during freezing and the use of certain additives to control freezing-related damages. Focusing on ice diameter alone may be futile (e.g., liquid N2 freezing). Future optimization of technologies should be in a way that several processes along the farm to fork such as freezing, frozen storage, thawing, thermal processing of fish, and even refabrication of food should mutually complement each other's needs to deliver safe and high-quality fish to the consumer's plate, even after a prolonged shelf-life.


Subject(s)
Fishes , Animals , Freezing
14.
Article in English | MEDLINE | ID: mdl-34343669

ABSTRACT

Digestive enzymes are found in the digestive tract of animals which assist in the breakdown of larger food molecules into more easily absorbed particles that can then be used by the body. The ability of fish to break down a diet is highly dependent on the availability of suitable digestive enzymes which mediate specific degradation pathways and on both the physical and chemical nature of food. Probiotics are known to produce helpful enzymes that aid in digestion and protect the gastrointestinal tract (GIT) of animals. When applied appropriately, probiotics improve intestinal microbial balance which also improves digestive enzyme activities, food absorption, and decrease pathogenic issues in the GIT. They work hand-in-hand with the digestive enzymes in the GIT of animals as supplements thereby improvings nutrition. This in turn leads to higher feed efficiency and growth as well as the prevention of antinutritional factors present in the ingredients, intestinal disorders, and pre-digestion. This review seeks to present summaries of the results of research findings on the application of probiotics on the activities of digestive enzymes including amylase, lipase, and protease. Further, this review points out gaps in available literature and suggests ideas that could be explored in further investigations to better understand and enhance the activities of these digestive enzymes to increase feed and nutrient utilization and the production of aquaculture species.


Subject(s)
Probiotics , Animal Feed , Animals , Aquaculture , Diet , Dietary Supplements , Digestion , Fishes , Probiotics/pharmacology , Shellfish
15.
Biology (Basel) ; 10(12)2021 Nov 29.
Article in English | MEDLINE | ID: mdl-34943160

ABSTRACT

Large-bodied, river-migrating, rheophilic fishes (cyprinids) such as barbel Barbus barbus, nase Chondrostoma nasus, asp Leuciscus aspius, and vimba bream Vimba vimba are threatened in major European drainages. This represents the subject of our present study. Their hatchery nutrition prior to river-release is mostly on a hit-and-trial or carp-based diet basis. The study demonstrates an alternative approach to decide optimum nutrition for these conservation-priority and nutritionally data-poor fishes. The study revealed barbel as a central representative species in terms of wild body composition among other native rheophilic cyprinids considered (asp, nase, vimba bream). Taking barbel as a model, the study shows that barbel or rheophilic cyprinids may have carnivorous-like metabolism and higher requirements of S-containing, aromatic, branched-chain amino acids (AAs) than carps. Besides, there are important interactions of AAs and fatty acids (FAs) biosynthesis to consider. Only proper feeding of nutritionally well-selected diets may contribute to river stocking mandates such as steepest growth trajectory (≈less time in captivity), ideal size-at-release, body fitness (≈blend-in with wild conspecifics, predator refuge), better gastrointestinal condition, maximized body reserves of functional nutrients, and retention efficiencies (≈uncompromised physiology). Considering important physiological functions and how AA-FA interactions shape them, hatchery-raised fishes on casually chosen diets may have high chances of physiological, morphological, and behavioral deficits (≈low post-stocking survivability). Based on the observations, optimum nutrient requirements of juvenile (0+ to 1+ age) barbels are suggested. Future efforts may consider barbels as a nutrition model for conservation aquaculture of threatened and data poor rheophilic cyprinids of the region.

16.
Int J Biol Macromol ; 191: 803-810, 2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34597693

ABSTRACT

Pickering emulsions have been known to be promising candidates for encapsulating and delivering a wide range of bioactive compounds with antioxidant potentials. In this work, we formulated and characterized zein (ZN)/chitosan (CS) stabilized Pickering emulsion. The prepared emulsions were firstly characterized by droplet size after preparation and after storage for one month at room temperature as well as after the addition of prebiotic gum Arabic (GA). Rheological measurements were further carried out to see the behavior and stability of these emulsions after storage. Thereafter, vit-D3 was encapsulated, and the antioxidant activity of the emulsions system were evaluated. The results showed that no significant change in the mean droplet diameter of the emulsions was observed after storage for a month. This claim was further confirmed by their rheological measurements particularly, the emulsions prepared with ZN/CS ratio of 1:2 having 50% oil contents exhibited significant stability. GA addition caused a gradual increase in the droplet size up to some level, after which it led to complete destabilization of the emulsion. Finally, to protect and deliver, vit-D3 was successfully loaded in these emulsions. No significant difference in the DPPH radical scavenging activity of the vit-D3 encapsulated emulsions was observed, showing their capability as delivery vehicles irrespective of their composition.


Subject(s)
Antioxidants/chemistry , Chitosan/analogs & derivatives , Cholecalciferol/administration & dosage , Nanocapsules/chemistry , Vitamins/administration & dosage , Zein/chemistry , Emulsions/chemistry , Gum Arabic/chemistry , Rheology
17.
Foods ; 10(6)2021 Jun 17.
Article in English | MEDLINE | ID: mdl-34204538

ABSTRACT

The current knowledge on how different Eurasian perch rearing systems impact the final fillet quality is scant. Therefore, two domestic storage conditions were investigated-10 months frozen (-20 °C) and 12 days refrigerated (+4 °C) storage conditions-in order to determine (i) how the choice of rearing system affects fillets quality during different processing conditions and (ii) if oxidative changes and other quality parameters were interactive. For the proposed idea, proteome analysis, oxidative changes, and some quality parameters were considered in this study. Sodium dodecyl-sulfate polyacrylamide gel electrophoresis (SDS-PAGE) indicated a higher loss of protein in the frozen fillets from ponds (PF) than the fillets from recirculating aquaculture systems (RAS) (RF). Western blot showed a higher protein carbonyls level in RF compared to PF, which was confirmed by the total protein carbonyls during frozen storage. PF indicated less liquid loss, hardness, and oxidation progress than RF in both storage conditions. The biogenic amines index (BAI) in the fillets from either origin showed acceptable levels during storage at +4 °C. Furthermore, the n-3/n-6 ratio was similar for both fillets. The deterioration of fillets during frozen storage was mainly caused by formation of ice crystals followed by protein oxidation, while protein oxidation was the main concern during refrigerated storage confirmed by principal component analysis (PCA) analysis.

18.
Carbohydr Polym ; 265: 118096, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-33966851

ABSTRACT

In the current study, we synthesized eugenol (EU) based Pickering emulsion (PE) stabilized by food grade ingredients such as chitosan (CS) and tripolyphosphate (TPP) not only to enhance water miscibility of EU but also to decrease stress and damage to the immune system of fish due to anesthetic procedures. The formulated EUPEs were characterized in terms of droplet size, size distribution and the effects of environmental conditions e.g. pH and temperature on the behavior of the EUPEs. The results showed that EU PEs with 5% EU had smaller size with uniform distribution and were stable in the range of pH 5-7.5 and temperature 30-80 °C. The anesthetic effect of the EUPE was investigated by taking Common carp as a sample species. Interestingly, it was found that the induction time to anesthesia and recovery for the fish that received the PE was significantly shorter than that received EU at the same eugenol concentration (50 ppm). Most importantly, the improved hematological and bio-chemical parameters in the PE group further confirmed the immuno-protective and stress control efficacy of the PE. The results of this study propose a novel useful and potential application of PE in fishery where sedation is needed.

19.
J Sci Food Agric ; 101(1): 91-100, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-32613621

ABSTRACT

BACKGROUND: Omega-3 common carp (OCC) raised by patented culture systems have higher level of n-3 fatty acids and n-3/n-6 ratio than normal common carps (NCCs) from traditional culture system. Whether the patented farming system and modified fatty acid profile will influence OCC storage stability is unclear. This study aimed to expose the differences of post-mortem quality changes between NCC and OCC. RESULTS: NCC and OCC have similar rigor mortis patterns, only a higher level of lactic acid was observed in NCC after 96 h. Adenosine triphosphate (ATP) related compounds had no major differences, but slightly higher inosine monophosphate in OCC was found at 36 h. The K-value, Ki-value and Hx-index demonstrated high cohesiveness (Pearsons two-tailed, r = 0.968-0.984, P < 0.05) during storage, with statistically comparable (P > 0.05) temporal progress of change in NCC and OCC. The indices were lower in OCC than in NCC. Attenuation of myosin heavy chain in OCC was not as distinct as in NCC, coincided with its higher salt-soluble protein level at 144 h. Before 96 h, thiobarbituric acid value (TBA), total viable count (TVC), cooking loss (CL), drip loss (DL), and hardness in NCC and OCC were similar. However, at 144 h, higher TBA, TVC, CL and DL while lower hardness in NCC than in OCC were observed. Principle component analysis showed good separation of NCC and OCC in biplot at 0 and 144 h. CONCLUSION: Patented culture system has a slightly positive influence on post-mortem quality of common carp. It can be used for producing OCC without compromising storage stability. © 2020 Society of Chemical Industry.


Subject(s)
Carps/growth & development , Seafood/analysis , Adenosine Triphosphate/analysis , Animals , Carps/classification , Cold Temperature , Food Storage , Quality Control
20.
Sci Rep ; 10(1): 19607, 2020 11 11.
Article in English | MEDLINE | ID: mdl-33177672

ABSTRACT

Screening of novel feedstuffs, that too for data-deficient (nutritionally) animals, is somewhat ambiguous or problematic. Through systematic meta-analyses, the present study formulated most up-to-date crayfish nutritional standards, against which a recyclable waste (biofloc biomass, BM) from intensive aquaculture systems was assessed as a novel protein source. Growth trajectory dependencies and thermal growth coefficient qualifying for good growth in crayfish (TGC 0.5-0.64 units) were benchmarked. Using these standards and a 7-week growth trial, BM's suitability as a novel protein source for red swamp crayfish Procambarus clarkii was evaluated through its graded inclusions in a commercial feed. Results suggest that BM can elevate growth at 33-66% inclusion in existing feed formulations. Beyond 66% inclusion, BM can deteriorate growth in crayfish due to high ash content (exceeding physiological limit > 14%), arginine deficiency (~ 14-20% lower than an optimum requirement), and insufficient non-protein energy: protein ratio (3.7 cal mg-1). Arginine is perhaps the most critical amino acid in dietary protein for crayfish, and deficient in BM. Although no critical bioaccumulation levels of heavy metals were breached by feeding 100% BM to crayfish, a mineral and heavy metal (Hg) stress seemed plausible. Crayfish raised solely on biofloc may not realize full growth potential.


Subject(s)
Animal Feed , Aquaculture/methods , Astacoidea/growth & development , Recycling , Animal Nutritional Physiological Phenomena , Animals , Astacoidea/chemistry , Astacoidea/physiology , Cichlids , Fresh Water , Hepatopancreas/chemistry , Metals, Heavy/analysis , Proteins/chemistry , Proteins/pharmacology , Stress, Physiological , Waste Products
SELECTION OF CITATIONS
SEARCH DETAIL
...