Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
BMC Plant Biol ; 24(1): 383, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724888

ABSTRACT

Taxus chinensis (Taxus cuspidata Sieb. et Zucc.) is a traditional medicinal plant known for its anticancer substance paclitaxel, and its growth age is also an important factor affecting its medicinal value. However, how age affects the physiological and metabolic characteristics and active substances of T. chinensis is still unclear. In this study, carbon and nitrogen accumulation, contents of active substances and changes in primary metabolites in barks and annual leaves of T. chinensis of different diameter classes were investigated by using diameter classes instead of age. The results showed that leaves and barks of small diameter class (D1) had higher content of non-structural carbohydrates and C, which were effective in enhancing defense capacity, while N content was higher in medium (D2) and large diameter classes (D3). Active substances such as paclitaxel, baccatin III and cephalomannine also accumulated significantly in barks of large diameter classes. Moreover, 21 and 25 differential metabolites were identified in leaves and barks of different diameter classes, respectively. The differential metabolites were enhanced the TCA cycle and amino acid biosynthesis, accumulate metabolites such as organic acids, and promote the synthesis and accumulation of active substances such as paclitaxel in the medium and large diameter classes. These results revealed the carbon and nitrogen allocation mechanism of different diameter classes of T. chinensis, and its relationship with medicinal components, providing a guidance for the harvesting and utilization of wild T. chinensis.


Subject(s)
Carbon , Metabolomics , Nitrogen , Plant Leaves , Taxus , Taxus/metabolism , Nitrogen/metabolism , Carbon/metabolism , Plant Leaves/metabolism , Plant Bark/metabolism , Plant Bark/chemistry
2.
Life (Basel) ; 14(2)2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38398761

ABSTRACT

Soil microbiota are significantly influenced by their microenvironments. Therefore, to understand the impacts of various land use patterns on the diversity and composition of soil bacterial communities, this study focused on three typical land use types-NF (natural forest), AF (artificial forests), and FL (farmland)-in the Heilongjiang Central Station Black-billed Capercaillie National Nature Reserve, located in the southwestern part of Heihe City, Heilongjiang Province, China. Using high-throughput sequencing of the 16S rRNA gene, we examined the soil bacterial community structures in these different land use types and explored their correlation with soil environmental factors. The following were our main observations: (1) Significant variations in soil chemical properties among different land use patterns were observed. In artificial forests, total nitrogen (TN), alkali hydrolyzed nitrogen (AN), total phosphorus (TP), and available phosphorus (AP) were higher compared to farmland and significantly higher than those in natural forests. Furthermore, the organic carbon content (SOC) in natural forests was higher than in artificial forests and significantly higher than in farmland. (2) Comparative analysis using the Shannon and Simpson indices revealed that bacterial community diversity was higher in artificial forests than in natural forests, which was significantly higher than in farmland. (3) The effect of different land use types on soil bacterial community structure was not significant. The three land types were dominated by Proteobacteria, Acidobacteria, and Actinobacteria. Proteobacteria exhibited a higher relative abundance in farmland and artificial forests compared to natural forests, whereas Actinobacteria exhibited the lowest relative abundance in natural forests. (4) Redundancy analysis (RDA) revealed that SOC, TN, AN, and AP were key environmental factors influencing the microbial communities of soil. Collectively, our findings demonstrated that land use practices can significantly alter soil nutrient levels, thereby influencing the structure of bacterial communities.

3.
Metabolites ; 13(12)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38132875

ABSTRACT

Asarum (Asarum sieboldii Miq. f. seoulense (Nakai) C. Y. Cheng et C. S. Yang) is a medicinal plant that contains asarinin and sesamin, which possess extensive medicinal value. The adaptation and distribution of Asarum's plant growth are significantly affected by altitude. Although most studies on Asarum have concentrated on its pharmacological activities, little is known about its growth and metabolites with respect to altitude. In this study, the physiology, ionomics, and metabolomics were investigated and conducted on the leaves and roots of Asarum along an altitude gradient, and the content of its medicinal components was determined. The results showed that soil pH and temperature both decreased along the altitude, which restricts the growth of Asarum. The accumulation of TOC, Cu, Mg, and other mineral elements enhanced the photosynthetic capacity and leaf plasticity of Asarum in high-altitude areas. A metabolomics analysis revealed that, at high altitude, nitrogen metabolism in leaves was enhanced, while carbon metabolism in roots was enhanced. Furthermore, the metabolic pathways of some phenolic substances, including syringic acid, vanillic acid, and ferulic acid, were altered to enhance the metabolism of organic acids. The study uncovered the growth and metabolic responses of Asarum to varying altitudes, providing a theoretical foundation for the utilization and cultivation of Asarum.

4.
Molecules ; 28(8)2023 Apr 07.
Article in English | MEDLINE | ID: mdl-37110529

ABSTRACT

To study the effect of growth temperature on the nutritional components and metabolites of the wild soybean (Glycine soja), we analyzed the nutritional components and metabolic gases of the wild soybean in six accumulated temperature regions of the Heilongjiang Province, China, by gas chromatography-time-of-flight mass spectrometry (GC-TOF-MS). A total of 430 metabolites, including organic acids, organic oxides, and lipids, were identified and analyzed using multivariate statistical analysis, orthogonal partial least squares discriminant analysis, principal component analysis, and cluster analysis. Eighty-seven metabolites significantly differed in the sixth accumulated temperature region compared with the other five accumulated temperature regions. The 40 metabolites (such as threonine (Thr) and lysine (Lys)) were found to be elevated in soybeans from the sixth accumulated temperature zone compared with the other five accumulated temperature zones. Through analyzing the metabolic pathways of these metabolites, amino acid metabolism had the greatest influence on wild soybean quality. The results of the amino acid analysis were consistent with those of the GC-TOF-MS and showed that amino acids in wild soybeans from the sixth accumulated temperature zone significantly differed from those of the other zones. Threonine and lysine were the main substances driving these differences. The growth temperature affected the type and concentrations of metabolites in wild soybeans, and the GC-TOF-MS analysis of the effect of growth temperature on wild soybean metabolites was shown to be feasible.


Subject(s)
Fabaceae , Lysine , Lysine/metabolism , Metabolomics/methods , Fabaceae/metabolism , Glycine max/chemistry , Amino Acids/analysis , Threonine/metabolism , Glycine/metabolism
5.
Front Microbiol ; 13: 1065412, 2022.
Article in English | MEDLINE | ID: mdl-36532438

ABSTRACT

Soil bacteria play important roles in biogeochemical cycling and biodiversity in mountain ecosystems. Past studies have investigated the bacterial community composition and diversity in elevation gradations covered by different vegetation types, but for a better assessment of elevation effects, here we studied bacterial communities in soil under identical vegetation cover. High-throughput amplicon sequencing of the V3-V4 region of bacterial 16S rDNA was used to investigate the diversity and composition bacterial communities in soil from 700 to 1,000 m above sea level collected on the north slope of Changbai Mountains, Northeast China. Obviously differences (p < 0.05) in soil physicochemical parameters (i.e., total nitrogen, nitrate and ammonium nitrogen, soil moisture content, available potassium, microbial biomass carbon and nitrogen) were observed at different elevations. Soil bacterial abundance indices (Richness, Chao1, ACE) differed significantly along the elevation gradient, whereas the Shannon index remained unchanged. Principal Coordinates Analysis indicated separated soil bacterial communities of the different elevations. The dominant phyla in all soil samples were Proteobacteria, Acidobacteria, Actinobacteria, Verrucomicrobia, and Bacteroidetes, which in combination reached 80%-85%. Soil pH to some extend related to soil bacterial community along altitude gradations. The relative abundance of a multiple phyla was negatively affected by the soil nutrients, such as ammonium and nitrate nitrogen, available potassium, soil moisture content, available phosphorus, microbial biomass nitrogen and soil organic C. The strongest effects were seen for Proteobacteria. The pH either positively or negatively correlated with specific genera. The soil bacterial function differed significantly among four elevations. The chemoheterotrophy, aerobic chemoheterotrophy and nitrification were the most dominant functions of soil bacteria among four elevations. Overall, the changes in soil physicochemical properties with elevation are important in shaping the bacterial diversity, composition and function in soil with the same above-ground vegetation of Changbai Mountains.

6.
Polymers (Basel) ; 14(15)2022 Aug 03.
Article in English | MEDLINE | ID: mdl-35956687

ABSTRACT

The polyethylene terephthalate (PET) beverage bottle is one of the most common beverage packages in the world, but the bottom of the PET bottle tends to crack due to excessive stress. In this paper, through numerical simulation and finite element analysis, the mechanical properties of four typical geometric models of bottle bottom are studied, and it is determined that "claw flap bottle bottom (CF-bottom)" has the best structure. Then, the shapes of four bottle bottom structures are fine-tuned by using the automatic optimization method. Under the premise of the same material quality, the surface maximum principal stress, the overall maximum principal stress, and the total elastic strain energy of the bottle bottom are reduced by 46.39-71.81%, 38.16-71.50%, and 38.56-61.38%, respectively, while the deformation displacement is also reduced by 0.63 mm-3.43 mm. In contrast to other papers, this paper dispenses with the manual adjustment of various variables, instead adopting automatic shape optimization to obtain a more accurate model. The percentage of maximum principal stress reduction is remarkable, which provides a feasible theoretical guidance for the structural optimization of PET bottle bottom in the production process.

7.
Polymers (Basel) ; 14(16)2022 Aug 17.
Article in English | MEDLINE | ID: mdl-36015621

ABSTRACT

Compared with other materials, polyethylene terephthalate (PET) has high transparency, excellent physical and mechanical properties in a wide temperature range and good hygiene and safety, so it is widely used in the packaging industry, especially in the packaging of beverages and foods. The optimization of PET bottles is mainly reflected in three aspects: material optimization, structure optimization and process optimization, among which there is much research on material optimization and process optimization, but there is no complete overview on structure optimization. A summary of structural optimization is necessary. Aiming at structural optimization, the finite element method is a useful supplement to the beverage packaging industry. By combining the computer-aided design technology and using finite element software for finite element simulation, researchers can replace the experimental test in the pre-research design stage, predict the effect and save cost. This review summarizes the development of PET bottles for beverage packaging, summarizes various optimization methods for preventing stress cracking in beverage packaging, and especially focuses on comparing and evaluating the effects of several optimization methods for packaging structure. Finally, the future development of all kinds of optimization based on structural optimization in the field of beverage packaging is comprehensively discussed, including personalized design, the combination of various methods and the introduction of actual impact factor calculation.

8.
Open Life Sci ; 16(1): 758-765, 2021.
Article in English | MEDLINE | ID: mdl-34435132

ABSTRACT

Understanding the response of biomass allocation in current-year twigs is crucial for elucidating the plant life-history strategies under heterogeneous volcanic habitats. We aimed to test whether twig biomass allocation, within-leaf biomass allocation, and the size-number trade-off of Betula platyphylla would be influenced. We measured twig traits of B. platyphylla in Wudalianchi volcanic kipuka, the lava platform, and Shankou lake in northeastern China using standardized major axis analyses. The results showed that the leaf number, total lamina mass (TLAM), stem mass (SM), and twig mass (TM) were significantly different between the three habitats and were greatest in kipuka with abundant soil nutrients. TLAM and SM scaled allometrically with respect to TM, while the normalization constants of the lava platform differ significantly between kipuka and Shankou lake, which showed that under certain TM, leaves gain more biomass in the lava platform. However, within the leaf, individual lamina mass (ILM) scaled isometrically with respect to individual petiole mass (IPM) in kipuka and the lava platform, but ILM scaled allometrically to IPM in Shankou lake. Our results indicated that inhabitats influenced the twig traits and biomass allocation and within-leaf biomass allocation are strategies for plants to adapt to volcanic heterogeneous habitats.

9.
New Phytol ; 231(4): 1478-1495, 2021 08.
Article in English | MEDLINE | ID: mdl-33713445

ABSTRACT

Plant cellulose is synthesized by a large plasma membrane-localized cellulose synthase (CesA) complex. However, an overall functional determination of secondary cell wall (SCW) CesAs is still lacking in trees, especially one based on gene knockouts. Here, the Cas9/gRNA-induced knockouts of PtrCesA4, 7A, 7B, 8A and 8B genes were produced in Populus trichocarpa. Based on anatomical, immunohistochemical and wood composition evidence, we gained a comprehensive understanding of five SCW PtrCesAs at the genetic level. Complete loss of PtrCesA4, 7A/B or 8A/B led to similar morphological abnormalities, indicating similar and nonredundant genetic functions. The absence of the gelatinous (G) layer, one-layer-walled fibres and a 90% decrease in cellulose in these mutant woods revealed that the three classes of SCW PtrCesAs are essential for multilayered SCW structure and wood G-fibre. In addition, the mutant primary and secondary phloem fibres lost the n(G + L)- and G-layers and retained the thicker S-layers (L, lignified; S, secondary). Together with polysaccharide immunolocalization data, these findings suggest differences in the role of SCW PtrCesAs-synthesized cellulose in wood and phloem fibre wall structures. Overall, this functional understanding of the SCW PtrCesAs provides further insights into the impact of lacking cellulose biosynthesis on growth, SCW, wood G-fibre and phloem fibre wall structures in the tree.


Subject(s)
Cell Wall/enzymology , Glucosyltransferases/metabolism , Populus , CRISPR-Cas Systems , Cellulose/metabolism , Gene Knockout Techniques , Populus/enzymology , Populus/genetics , RNA, Guide, Kinetoplastida , Wood/metabolism
10.
Biomolecules ; 10(4)2020 03 26.
Article in English | MEDLINE | ID: mdl-32225015

ABSTRACT

: Ultraviolet-B (UV-B) radiation (280-320 nm) may induce photobiological stress in plants, activate the plant defense system, and induce changes of metabolites. In our previous work, we found that between the two Astragalus varieties prescribed by the Chinese Pharmacopoeia, Astragalus mongholicus has better tolerance to UV-B. Thus, it is necessary to study the metabolic strategy of Astragalus under UV-B radiation further. In the present study, we used untargeted gas chromatography-mass spectrometry (GC-MS) and targeted liquid chromatography-mass spectrometry (LC-MS techniques) to investigate the profiles of primary and secondary metabolic. The profiles revealed the metabolic response of Astragalus to UV-B radiation. We then used real-time polymerase chain reaction (RT-PCR) to obtain the transcription level of relevant genes under UV-B radiation (UV-B supplemented in the field, λmax = 313 nm, 30 W, lamp-leaf distance = 60 cm, 40 min·day-1), which annotated the responsive mechanism of phenolic metabolism in roots. Our results indicated that supplemental UV-B radiation induced a stronger shift from carbon assimilation to carbon accumulation. The flux through the phenylpropanoids pathway increased due to the mobilization of carbon reserves. The response of metabolism was observed to be significantly tissue-specific upon the UV-B radiation treatment. Among phenolic compounds, C6C1 carbon compounds (phenolic acids in leaves) and C6C3C6 carbon compounds (flavones in leaves and isoflavones in roots) increased at the expense of C6C3 carbon compounds. Verification experiments show that the response of phenolics in roots to UV-B is activated by upregulation of relevant genes rather than phenylalanine. Overall, this study reveals the tissues-specific alteration and mechanism of primary and secondary metabolic strategy in response to UV-B radiation.


Subject(s)
Astragalus propinquus/metabolism , Astragalus propinquus/radiation effects , Phenols/metabolism , Astragalus propinquus/genetics , Chromatography, Liquid , Flavonoids/genetics , Flavonoids/metabolism , Gas Chromatography-Mass Spectrometry , Gene Expression Regulation, Plant , Hydroxybenzoates/metabolism , Mass Spectrometry , Plant Leaves/metabolism , Plant Leaves/radiation effects , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Roots/metabolism , Plants, Medicinal , Secondary Metabolism , Seedlings/genetics , Seedlings/metabolism , Seedlings/radiation effects , Ultraviolet Rays
11.
Molecules ; 23(8)2018 Aug 20.
Article in English | MEDLINE | ID: mdl-30127238

ABSTRACT

Acanthopanax senticosus (Rupr. Maxim.) Harms (ASH) and Acanthopanax sessiliflorus (Rupr. Maxim.) Seem (ASS), are members of the Araliaceae family, and both are used in Asian countries. These herbals have drawn much attention in recent years due to their strong biological activity, with innocuity and little side effects. However, the common and distinct mode of compound profiles between ASH and ASS is still unclear. In this study, a high performance liquid chromatograph-mass spectrometry (HPLC-MS) method was developed to simultaneously quantify the seven major active compounds, including protocatechuate, eleutheroside B, eleutheroside E, isofraxidin, hyperoside, kaempferol and oleanolic acid. Then the targeted metabolomics were conducted to identify 19 phenolic compounds, with tight relation to the above mentioned active compounds, including nine C6C3C6-type, six C6C3-type and four C6C1-type in the two Acanthopanax species studied here. The results showed that the seven active compounds presented a similar trend of changes in different tissues, with more abundant accumulation in roots and stems for both plants. From the view of plant species, the ASH plants possess higher abundance of compounds, especially in the tissues of roots and stems. For phenolics, the 19 phenols detected here could be clearly grouped into five main clusters based on their tissue-specific accumulation patterns. Roots are the tissue for the most abundance of their accumulations. C6C3C6-type compounds are the most widely existing type in both plants. In conclusion, the tissue- and species-specificity in accumulation of seven active compounds and phenolics were revealed in two Acanthopanax species.


Subject(s)
Araliaceae/chemistry , Hydroxybenzoates/metabolism , Metabolomics/methods , Plant Extracts/analysis , Benzopyrans/analysis , Chromatography, High Pressure Liquid , Hydroxybenzoates/analysis , Oleanolic Acid/analysis , Plant Roots/chemistry , Plant Roots/metabolism , Plant Stems/chemistry , Plant Stems/metabolism , Species Specificity , Tandem Mass Spectrometry
12.
Mitochondrial DNA B Resour ; 3(2): 575-576, 2018 May 10.
Article in English | MEDLINE | ID: mdl-33474247

ABSTRACT

The complete mitochondrial genome (mtDNA) of hemocyte from Siberian Crane (Grus leucogeranus) was sequenced using high-throughput genetic sequencing, and mitochondrial genome was assembled using MITObim tools according complete mitochondrial genome of Grus leucogeranus (NCBI Reference Sequence: NC_020574.1). The assembled mitogenome, consisting of 16,747 bp, has unique 14 protein-coding genes (PCGs), 22 transfer RNAs, and two ribosomal RNAs genes. The complete mitogenome provides essential and important DNA molecular data for further phylogenetic and evolutionary analysis for Siberian Crane phylogeny.

13.
World J Microbiol Biotechnol ; 33(1): 12, 2017 Jan.
Article in English | MEDLINE | ID: mdl-27885566

ABSTRACT

Changbai Mountain, with intact montane vertical vegetation belts, is located at a sensitive area of global climate change and a central distribution area of Korean pine forest. Broad-leaved Korean pine mixed forest (Pinus koraiensis as an edificator) is the most representative zonal climax vegetation in the humid region of northeastern China; their vertical zonation is the most intact and representative on Changbai Mountain. In this study, we analyzed the composition and diversity of soil fungal communities in the Korean pine forest on Changbai Mountain at elevations ranging from 699 to 1177 m using Illumina High-throughput sequencing. We obtained a total 186,663 optimized sequences, with an average length of 268.81 bp. We found soil fungal diversity index was decreased with increasing elevation from 699 to 937 m and began to rise after reaching 1044 m; the richness and evenness indices were decreased with an increase in elevation. Soil fungal compositions at the phylum, class and genus levels varied significantly at different elevations, but with the same dominant fungi. Beta-diversity analysis indicated that the similarity of fungal communities decreased with an increased vertical distance between the sample plots, showing a distance-decay relationship. Variation partition analysis showed that geographic distance (mainly elevation gradient) only explained 20.53 % of the total variation of fungal community structure, while soil physicochemical factors explained 69.78 %.


Subject(s)
Fungi/classification , Fungi/isolation & purification , High-Throughput Nucleotide Sequencing/methods , Pinus/microbiology , Sequence Analysis, DNA/methods , Adaptation, Physiological , Altitude , Biodiversity , Forests , Fungi/genetics , Phylogeny , Soil/chemistry , Soil Microbiology
14.
Environ Sci Pollut Res Int ; 21(18): 11094-8, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24878553

ABSTRACT

In order to examine whether the leaves of the Colorado blue spruce (Picea pungens) are damaged or not by traffic pollution, the traits of the anatomy and physiology of its leaves are investigated by exposure to vehicle exhausts in a laboratory experiment lasting 30 days. The results show that both the anatomical structures and physiological traits of the leaves are significantly affected by vehicle exhausts. The anatomical structures, including epidermis, cuticle, palisade, and spongy parenchyma are modified when exposed to the high concentrations (≥ 0.4 mg/m(3)) of vehicle exhausts. However, physiological traits such as total chlorophyll content are not changed when exposed to different concentrations of vehicle exhaust. Unlike the total chlorophyll content, the electrical conductivities increased, whereas the POD activities decreased when presented in vehicle exhausts. The present study indicates that the Colorado blue spruce changes its anatomical structures and physiological traits to avoid possible damage by vehicle exhausts.


Subject(s)
Air Pollutants/pharmacology , Picea/physiology , Plant Leaves/physiology , Vehicle Emissions , Chlorophyll/metabolism , Electric Conductivity , Picea/cytology , Picea/drug effects , Plant Leaves/cytology , Plant Leaves/drug effects
15.
Can J Microbiol ; 57(4): 328-32, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21491984

ABSTRACT

Very little is known about the tolerance of ectomycorrhizal fungi to the freezing and repetitive freezing-thawing in northern coniferous forests. Isolates of Cortinarius multiformis , Russula densifolia , Suillus granulatus , and Lactarius deliciosus were exposed to a series of temperatures between +4 and -40 °C. The relative electrolyte leakage test indicated that the lethal temperature for 50% of samples was between -7.6 and -13.7 °C. Resume growth experiments showed that the 4 species of ectomycorrhizal fungi had a relatively high tolerance to the low temperatures, with L. deliciosus having the highest tolerance and C. multiformis the lowest. The repeated freezing-thawing delayed the growth of mycelium, which decreased with an increase in the number of freeze-thaw cycles.


Subject(s)
Cold Temperature , Freezing , Mycorrhizae/physiology , Electrolytes/metabolism , Mycelium/growth & development , Mycorrhizae/growth & development , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...