Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 13: 932722, 2022.
Article in English | MEDLINE | ID: mdl-35967417

ABSTRACT

Cyprinid herpesvirus 2 (CyHV-2) causes herpesviral hematopoietic necrosis (HVHN) disease outbreaks in farmed Cyprinid fish, which leads to serious economic losses worldwide. Although oral vaccination is considered the most suitable strategy for preventing infectious diseases in farmed fish, so far there is no commercial oral vaccine available for controlling HVNN in gibel carp (C. auratus gibelio). In the present study, we developed for the first time an oral vaccine against CyHV-2 by using yeast cell surface display technology and then investigated the effect of this vaccine in gibel carp. Furthermore, the protective efficacy was evaluated by comparing the immune response of a single vaccination with that of a booster vaccination (booster-vaccinated once 2 weeks after the initial vaccination). Critically, the activities of immune-related enzymes and genes expression in vaccine group, especially in the booster vaccine group, were higher than those in the control group. Moreover, strong innate and adaptive immune responses could be elicited in both mucosal and systemic tissues after receipt of the oral yeast vaccine. To further understand the protective efficacy of this vaccine in gibel carp, we successfully developed the challenge model with CyHV-2. Our results showed the relative percent survival was 66.7% in the booster vaccine group, indicating this oral yeast vaccine is a promising vaccine for controlling CyHV-2 disease in gibel carp aquaculture.


Subject(s)
Fish Diseases , Herpesviridae Infections , Vaccines , Animals , Goldfish , Herpesviridae , Herpesviridae Infections/prevention & control , Herpesviridae Infections/veterinary , Immunity, Mucosal , Saccharomyces cerevisiae
2.
J Immunol ; 209(6): 1095-1107, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35985789

ABSTRACT

Mammalian studies have demonstrated that B cell immune responses are regulated by mechanistic target of rapamycin complex 1 (mTORC1) signaling. Teleost fish represent the oldest living bony vertebrates that contain bona fide B cells. So far, whether the regulatory mechanism of mTORC1 signaling in B cells occurred in teleost fish is still unknown. In this study, we developed a fish model by using rapamycin (RAPA) treatment to inhibit mTORC1 signaling and demonstrated the role of mTORC1 signaling in teleost B cells. In support, we found inhibition of mTORC1 signaling by RAPA decreased the phagocytic capacity, proliferation, and Ig production of B cells. Critically, Flavobacterium columnare induced specific IgM binding in serum, and these titers were significantly inhibited by RAPA treatment, thus decreasing Ab-mediated agglutination of F. columnare and significantly increasing the susceptibility of fish upon F. columnare reinfection. Collectively, our findings elucidated that the mTORC1 pathway is evolutionarily conserved in regulating B cell responses, thus providing a new point for understanding the B cells functions in teleost fish.


Subject(s)
B-Lymphocytes , Signal Transduction , Animals , Fishes , Immunoglobulin M , Mammals , Mechanistic Target of Rapamycin Complex 1 , Sirolimus/pharmacology
3.
Fish Shellfish Immunol ; 118: 385-395, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34563671

ABSTRACT

CD79a and CD79b heterodimers are important components that consist of B cell receptor compound, which play a crucial role in transduction activation signal of the antigen binding BCR, and B cell development and antibody production. In order to investigate the characters and potential functions of CD79a and CD79b in rainbow trout (Oncorhynchus mykiss), we firstly cloned and analyzed the expression of CD79a and CD79b and found that the cDNA sequences of CD79a and CD79b both contained open reading frame of 711 and 645 bp in length for encoding the protein of 237 and 215 amino acid residues, respectively. The predicted amino acid sequences from trout were highly conserved with those of other teleost fishes in structure. Phylogenetic tree was constructed to analyze the evolutionary relationship between the trout and other known species, the result indicated that CD79a and CD79b of trout clustered at high bootstrap values with Salmo salar. Moreover, three trout infection models with F. columnare G4, I. multifiliis and infectious hematopoietic necrosis virus (IHNV) were constructed, which resulted in morphological changes and serious lesions in skin and gills. Importantly, the high expression of CD79a and CD79b occurred in skin, gills, and followed by head kidney in response to bacterial, parasitic, and viral infection, as its expression was closely related to that of Igs. Our findings indicated that CD79a and CD79b play vital roles in both systemic and mucosal immune responses of rainbow trout during bacterial, parasitic, and viral infection, which will contribute to explore the roles of CD79 subunits in B cell signaling during ontogeny and disease.


Subject(s)
Fish Diseases , Oncorhynchus mykiss , Parasites , Virus Diseases , Animals , Bacteria , Cloning, Molecular , Oncorhynchus mykiss/genetics , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL
...