Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Bioresour Technol ; : 131079, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38972431

ABSTRACT

The influence of sulfamethoxazole (SMX) on the electrochemical activity, bacterial community, and metabolic state of anode respiring microbes was investigated in constructed-wetland-coupled microbial fuel cells (CW-MFCs). Results suggested that SMX shortened the acclimatisation period and enhanced the maximal power density of the CW-MFC at 0.1 mg/L. Cyclic voltammetry (CV) results indicated that SMX may trigger an electrocatalytic process related to an extra redox-active compound. Exposure to SMX significantly altered the bacterial communities, leading to decreased abundances of Desulfurivibrio and Pseudomonas, while increasing the contents of Rhodobacter and Anaerovorax. Furthermore, metabolites related to amino acids and nucleotide metabolism were suppressed at 10 mg/L SMX, while the related metabolites increased at 0.1 mg/L SMX. The upregulated pathway of biofilm formation indicated that the bacteria tended to form biofilms under the influence of SMX. This study provides valuable insights into the complex interactions between SMX and electrochemically active bacteria.

2.
J Environ Manage ; 344: 118653, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37478716

ABSTRACT

With the unprecedented exhaustion of natural phosphorus (P) resource and the high eutrophication potential of the associated-P discharge, P recovery from the domestic wastewater is a promising way and has been putting on agenda of wastewater industry. To address the concern of P resource recovery in an environmentally sustainable way is indispensable especially in the carbon neutrality-oriented wastewater treatment plants (WWTPs). Therefore, this review aims to offer a critical view and a holistic analysis of different P removal/recovery process in current WWTPs and more P reclaim options with the focus on the energy consumption and greenhouse gas (GHG) emission. Unlike P mostly flowing out in the planned/semi-planned P removal/recovery process in current WWTPs, P could be maximumly sequestered via the A-2B- centered process, direct reuse of P-bearing permeate from anaerobic membrane bioreactor, nano-adsorption combined with anaerobic membrane and electrochemical P recovery process. The A-2B- centered process, in which the anaerobic fixed bed reactor was designated for COD capture for energy efficiency while P was enriched and recovered with further P crystallization treating, exhibited the lowest specific energy consumption and GHG emission on the basis of P mass recovered. P resource management in WWTPs tends to incorporate issues related to environmental protection, energy efficiency, GHG emission and socio-economic benefits. This review offers a holistic view with regard to the paradigm shift from "simple P removal" to "P reuse/recovery" and offers in-depth insights into the possible directions towards the P-recovery in the "water-energy-resource-GHG nexus" plant.


Subject(s)
Greenhouse Gases , Water Purification , Wastewater , Carbon Footprint , Waste Disposal, Fluid
3.
Chemosphere ; 308(Pt 2): 136377, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36088980

ABSTRACT

Ultrafiltration (UF) is a reliable method to treat algal-rich water, whereas severe membrane fouling has impeded its actual application. To improve UF performance and alleviate membrane fouling resulted by algal foulants, a novel strategy coupling ferrate (Fe(VI)) and sodium percarbonate (SPC) was proposed. During the coupling process, Fe(VI) was activated by SPC to generate high-valent Fe intermediates (Fe(V) and Fe(IV)), which played a crucial role in high-efficiency oxidation for algal foulants, and the in-situ formed Fe(III) particles decomposed by Fe(VI) also enhanced the coagulation and adsorption capacity to the coupling system. Under the triple effects of coagulation, adsorption and oxidation, the algal foulants were efficiently eliminated. The zeta potential increased from -32.70 mV to -6.56 mV at most, the particle size was significantly enlarged, and the generated flocs possessed a great settleability. The morphology, viability, and integrity of algae cells were effectively maintained. The dissolved organic matters and fluorescent organics were efficiently removed, as well as macromolecular organics were reduced into lower molecular weight components. With the collaborative effect of Fe(VI) and SPC, the terminal specific flux was increased from 0.29 to 0.92, and the reversible and irreversible fouling resistances were reduced by 98.5% and 69.4%, individually. The surface functional groups were changed, and the dominant mechanisms were also converted to pore blocking from cake layer filtration. Overall, the experimental results would provide some new thoughts in actual production for algal-rich water treatment and UF membrane fouling alleviation.


Subject(s)
Ultrafiltration , Water Purification , Carbonates , Ferric Compounds , Iron , Membranes, Artificial , Water Purification/methods
4.
Water Environ Res ; 94(8): e10756, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35918066

ABSTRACT

The performance of microalgal-bacterial consortia in wastewater treatment and biomass production needs to be further optimized to meet increasingly stringent effluent standards and operating costs. Besides, due to uncontrollability of ambient conditions, it is generally believed that operating conditions (e.g., aeration) respond to ambient conditions (e.g., illumination). Therefore, response surface methodology (RSM) based on Box-Behnken design was used in this study to analyze the removal of chemical oxygen demand (COD), NH3 -N and TP, and algal biomass of the microalgal-bacterial consortia within 48 h. The results showed that under medium illumination intensity (5000 lx), photoperiod (12:12) and aeration rate (0.55 L min -1 ), the removal efficiency of COD, NH3 -N and TP was the highest, and the maximal biomass growth rates were 95.43%, 95.49%, 89.42% and 99.63%, respectively. However, as the limited critical removal requirements of TP, the effluent standards can only be achieved within the small illumination intensity and photoperiod available range, even under medium aeration conditions, which means that under fixed operating conditions, the effective operation range will be very limited. In addition, based on RSM and differential equation analysis, the further study indicated that the effective treatment range can be greatly expanded within aeration responding, which meets the discharge standard of pollutants in China. PRACTITIONER POINTS: Illumination was responded by aeration for optimizing performance of microalgal-bacterial consortium for wastewater treatment and biomass productivity. The strategy of optimization was based on response surface methodology. The maximum effect on wastewater treatment and biomass productivity was based on partial differential equations and quadratic inhomogeneous equations. Limited to critical TP-removal requirements, effluent standards can meet only in the small-usable range of illumination, under medium aeration.


Subject(s)
Microalgae , Water Purification , Bacteria , Biological Oxygen Demand Analysis , Biomass , Waste Disposal, Fluid/methods , Wastewater/microbiology , Water Purification/methods
5.
Sci Rep ; 11(1): 21118, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34702904

ABSTRACT

Microalgal-bacterial consortium is an effective way to meet increasingly stringent standards in wastewater treatment. However, the mechanism of wastewater removal effect has not been properly explained in community structure by phycosphere. And little is known about that the concept of macroecology was introduced into phycosphere to explain the phenomenon. In the study, the algal-bacterial consortia with different ratios of algae and sludge were cultured in same aerobic wastewater within 48 h in photobioreactors (PSBRs). Community structure at start and end was texted by metagenomic analysis. Bray-Curtis similarities analysis based on microbial community showed that there was obvious convergent succession in all consortia, which is well known as "convergence" in macroecology. The result showed that Bray-Curtis similarities at End (overall above 0.88) were higher than these at Start (almost less than 0.66). In terms of community structure, the consortium with 5:1 ratio at Start are the more similar with the consortia at End by which the maximum removal of total dissolved nitrogen (TDN, 73.69%), total dissolved phosphorus (TDP, 94.40%) and NH3-N (93.26%) in wastewater treatment process and biomass production (98.2%) higher than other consortia, according with climax community in macroecology with the highest resource utilization than other communities. Therefore, the macroecology can be introduced into phycosphere to explain the consortium for advanced wastewater treatment and optimization community structure. And the study revealed a novel insight into treatment effect and community structure of algal-bacterial consortia for advanced wastewater treatment, a new idea for to shortening the culture time of consortium and optimize predicting their ecological community structure and predicting ecological community.


Subject(s)
Bacteria/growth & development , Biomass , Microalgae/growth & development , Microbial Consortia , Photobioreactors , Water Purification
6.
Nat Commun ; 12(1): 5494, 2021 09 17.
Article in English | MEDLINE | ID: mdl-34535661

ABSTRACT

Sessile plants encode a large number of small peptides and cell surface-resident receptor kinases, most of which have unknown functions. Here, we report that the Arabidopsis receptor kinase MALE DISCOVERER 1-INTERACTING RECEPTOR-LIKE KINASE 2 (MIK2) recognizes the conserved signature motif of SERINE-RICH ENDOGENOUS PEPTIDEs (SCOOPs) from Brassicaceae plants as well as proteins present in fungal Fusarium spp. and bacterial Comamonadaceae, and elicits various immune responses. SCOOP signature peptides trigger immune responses and altered root development in a MIK2-dependent manner with a sub-nanomolar sensitivity. SCOOP12 directly binds to the extracellular leucine-rich repeat domain of MIK2 in vivo and in vitro, indicating that MIK2 is the receptor of SCOOP peptides. Perception of SCOOP peptides induces the association of MIK2 and the coreceptors SOMATIC EMBRYOGENESIS RECEPTOR KINASE 3 (SERK3) and SERK4 and relays the signaling through the cytosolic receptor-like kinases BOTRYTIS-INDUCED KINASE 1 (BIK1) and AVRPPHB SUSCEPTIBLE1 (PBS1)-LIKE 1 (PBL1). Our study identifies a plant receptor that bears a dual role in sensing the conserved peptide motif from phytocytokines and microbial proteins via a convergent signaling relay to ensure a robust immune response.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/immunology , Arabidopsis/microbiology , Cytokines/metabolism , Fusarium/physiology , Plant Immunity , Protein Kinases/metabolism , Receptors, Cell Surface/metabolism , Amino Acid Motifs , Amino Acid Sequence , Arabidopsis Proteins/chemistry , Mutation/genetics , Peptides/chemistry , Peptides/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Protein Domains , Protein Kinases/chemistry , Receptors, Cell Surface/chemistry
7.
Chemosphere ; 284: 131259, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34192664

ABSTRACT

Municipal wastewater is a very unique pool full of energy and useful substances. Though the innovative integrated anaerobic membrane bioreactor and reverse osmosis-ion exchange (AnMBR-RO-IE) process can produce high-grade reclaimed water with high energy efficiency, phosphorus resources recovery in the WWTPs has been rarely reported thus far. This study evaluated the feasibility of a phosphorus recovery batch reactor (PRBR) as an approach for the phosphate production from the P-enriched brine from AnMBR-RO-IE. With operating PRBR for 162 cycles, high to 85% of P recovery rate was obtained for 145 cycles, leading to a P production rate of 6.17 g/m3 domestic wastewater with nano-sorbents (NSs) consumption rate of 10.2 g/m3. Acidification pretreatment efficiently improved the adsorption capacity and reduced the NSs renewing frequency. High adsorption selectivity of NSs contributed to low impurities (<0.3%) in the P-enriched reclaimed solution. Moreover, the integrated AnMBR-RO-IE-PRBR process saved 47% of energy consumption compared to the present NEWater production process in Singapore. The innovative PRBR reactor was competitive compared to the commonly-used chemical precipitation methods in conventional WWTPs in terms of phosphorus recovery/loss and energy balance. It is expected that the proposed integrated process can offer new insights into the direction of phosphorus reclamation in the future WWTPs.


Subject(s)
Wastewater , Water Purification , Bioreactors , Membranes, Artificial , Phosphates , Phosphorus , Salts , Waste Disposal, Fluid , Wastewater/analysis
8.
Environ Technol ; 42(26): 4064-4071, 2021 Nov.
Article in English | MEDLINE | ID: mdl-32284023

ABSTRACT

In this work, chitosan, a biodegradable flocculant, was investigated to determine its utility in flocculating microalgae, its effect on cell integrity, and its impact on lipid extraction and the conversion to fatty acid methyl ester (FAME). Results showed that chitosan adequately performed flocculation on Chlorella vulgaris microalgae and achieved a high harvesting efficiency of 96.35 ± 1.96% when implemented under the following conditions: chitosan dose = 120 mg/L-1, pH = 5, mixing speed = 150 rpm for 20 min, followed by 10 min of settling time. Moreover, scanning electron microscope (SEM) combined with transmission electron microscope (TEM) demonstrated that chitosan protected the cells' structure from morphological damage. Finally, the highest lipid extraction yield and biodiesel production was obtained from the chitosan-harvested biomass when the microalgae were pretreated with ultrasound.


Subject(s)
Chitosan , Chlorella vulgaris , Microalgae , Biofuels , Biomass , Flocculation , Lipids
9.
Water Environ Res ; 93(8): 1217-1230, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33305497

ABSTRACT

The rise in living standards has generated a demand for higher aquatic environmental quality. The microalgal community and the surrounding organic molecules, environmental factors, and microorganisms, such as bacteria, are together defined as the phycosphere. The bacteria in the phycosphere can form consortia with microalgae through various forms of interaction. The study of the species in these consortia and their relative proportions is of great significance in determining the species and strains of stable algae that can be used in sewage treatment. This article summarizes the following topics: the interactions between microalgae and bacteria that are required to establish consortia; how symbiosis between algae and bacteria is established; microalgal competition with bacteria through inhibition and anti-inhibition strategies; the influence of environmental factors on microalgal-bacterial aggregates, such as illumination conditions, pH, dissolved oxygen, temperature, and nutrient levels; the application of algal-bacterial aggregates to enhance biomass production and nutrient reuse; and techniques for studying the community structure and interactions of algal-bacterial consortia, such as microscopy, flow cytometry, and omics. PRACTITIONER POINTS: Community structures in microalgal-bacterial consortia in wastewater treatment. Interactions between algae and bacteria in wastewater treatment. Effects of ecological factors on the algal-bacterial community in wastewater treatment. Economically recycling resources from algal-bacterial consortia based on wastewater. Technologies for studying microalgal-bacterial consortia in wastewater treatment.


Subject(s)
Microalgae , Bacteria , Biomass , Symbiosis , Wastewater
10.
Chemosphere ; 258: 127327, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32559493

ABSTRACT

Microparticle sorbents (MPSs) containing nano-Fe3O4 core, nano-layered double hydroxides shell modified with different transitional elements (TE-MPSs) are effective for capturing phosphate from wastewater. In present article, different TE-MPSs loaded with Ce, La, Zr and Hf were synthesized and the phosphorous removal performances were compared. The molecular-level mechanism of phosphate adsorption was successfully simulated by pseudo-atom model based on virtual crystal approximation method, which was in line with the spectroscopic data. The results confirmed the inter-sphere complexation reaction between phosphate and TE-MPSs under neutral pH. And the adsorption mechanism probably changed during cycles of adsorption/regeneration. As revealed by elemental composition analysis, ion exchange mechanism probably played an important part in phosphate adsorption in Cycle 1 while the ligand complexation became dominant after regenerated with NaOH in the following cycles. This work indicates that the highly effective, easily separable and repeatedly usable TE-MPSs has the potential for phosphate sequestration and recovery from sewage wastewater.


Subject(s)
Magnetite Nanoparticles , Phosphates/chemistry , Adsorption , Hydrogen-Ion Concentration , Hydroxides/chemistry , Phosphorus , Sewage , Transition Elements , Wastewater/chemistry
11.
Sci Total Environ ; 725: 138292, 2020 Jul 10.
Article in English | MEDLINE | ID: mdl-32298887

ABSTRACT

The largest contributor to pollutant emissions is the sintering process in steel industry. Ultra-low emission policy for the Chinese steel industry states that emission concentrations of particulate matter, SO2 and NOx should not exceed 10, 35 and 50 mg/m3 respectively. The emission concentrations of the steel industry are the same as the ultra-low emission policy for the coal-fired power industry, but the pollutant control technologies of the two industries are different. Life cycle assessment method is applied to analyze the latest ultra-low treatment process for sintering flue gas emissions which includes electrostatic precipitation, ozone oxidation, wet desulfurization, wet denitration, condensation dehumidification and wet electrostatic precipitation. Following this novel ultra-low emission treatment, the concentrations of particulate matter, SO2, NOx, and PCDDs in the sintering flue gas decreased very significantly, attaining the new emission standard. With 1 ton of sinter as the functional unit and "cradle to gate" as the system boundary, the environmental impact of the process is 0.1811 and the total economic cost is 172.79 RMB, of which internal cost is 34.64 RMB and external cost is 138.15 RMB. The main environmental impacts result from applying the wet denitration and ozone oxidation processes. Sodium sulfite in the wet denitration process, and electricity and liquid oxygen in the ozone oxidation process are the key inputs that cause environmental impact. These findings are useful for a further optimization of the ultra-low emissions process from both the environmental and economic perspective, which is applicable in other regions of the world.

12.
J Environ Manage ; 262: 110356, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32250825

ABSTRACT

Anaerobic digestion, the principal method of stabilizing biosolids in wastewater treatment plants (WWTPs), can efficiently and largely attenuate the antibiotic resistances in biosludge. This study aims to investigate the effect of oxidative pretreatment with ultrasound irradiation combined with ozone (US/O3) on the mesophilic and thermophilic anaerobic digestion (MAD and TAD) for the biosludge bearing trace fluoroquinolones contaminants-levofloxacin (LEVO) which was widely used in recent years. During the oxidation, the trace-level LEVO was almost completely degraded. The methanogenic activity in US/O3 pretreated TAD dosed 0.1 mg/L LEVO was much higher than those in single MAD and TAD, therefore leading to a remarkable increase in biogas production. The identification of levofloxacin intermediates during chemical degradation was analyzed using LCMS technique and the reaction pathway based on them was proposed. Hydroxyl radicals provided by US/O3 contributed to oxidative ring opening of LEVO as well as degradation of other biomacromolecules in the biosludge. Besides, the quinoline resistance genes-qnrA and qnrS declined significantly by 1-2 orders of magnitude in US/O3-pretreated TAD, indicating that the active radicals produced by US/O3 oxidized and degraded LEVO and therefore inactivated the antibiotic resistant bacteria or genes in the biosolids. Meanwhile, the composition and structure of the microbial community altered and the diversity and richness of total bacterial and potential human pathogens decreased, the pattern of which was correlated with LEVO-resistant genes. Among the well-known AD-related phylum including Bacteroidetes, Firmicutes, Methanobacteria as well as Thermotogae which has been previously detected in TAD and performed organic hydrolysis and degradation, the potential LEVO-resistant bacteria were probably affiliated to Actinobacteria, Bacteroidetes, Proteobacteria, Thermotogae. This study revealed the contribution of US/O3 pretreatment to the anaerobic digestion in terms of ARGs reduction for trace-LEVO- exposed biosludge and could provide useful guidance for controlling the dissemination of ARB and ARGs in sewage sludge.


Subject(s)
Microbiota , Ozone , Anaerobiosis , Humans , Levofloxacin , Sewage
13.
Environ Sci Pollut Res Int ; 27(13): 14503-14514, 2020 May.
Article in English | MEDLINE | ID: mdl-32040743

ABSTRACT

Northern China suffers from serious air pollution especially in winter, much of which derives from solid fuel used for domestic heating in rural areas. In order to reduce pollution emissions in the heating season, the Chinese government has introduced a "coal-to-gas conversion" policy, promoting a switch to natural gas which is much cleaner than the coal normally used for winter heating. The "coal-to-gas conversion" project will cover more than 1.8 billion m2 of heated built floor area and affect more than 12 million heat users in Beijing, Tianjin, Hebei, and the surrounding areas. Life cycle assessment and life cycle cost methods are applied to compare and analyze the environmental impact and economic cost of household energy usage for the whole year under 5 scenarios before and after "coal-to-gas conversion." In the three scenarios after "coal-to-gas conversion," the environmental impact decreases by around 50% while the total economic cost increases by around 80%. Particulate emissions responsible for air pollution are considerably reduced with accompanying benefits for human health, though significant, but reduced, impacts on freshwater and marine ecotoxicity remain. Improving thermal efficiency through natural gas utilization, implementing an energy-saving retrofit of rural housing, and promoting straw utilization yield benefits for people and the environment in rural areas of northern China.


Subject(s)
Air Pollution, Indoor/analysis , Air Pollution/analysis , Beijing , China , Coal/analysis , Heating , Humans , Particulate Matter/analysis
14.
Article in English | MEDLINE | ID: mdl-31434297

ABSTRACT

Municipal solid waste (MSW) is posing great challenge for most countries in the world, which can cause severe negative impacts to the environment and human health. Waste-to-energy has great potential in China because of its technological maturity and policy support at the national level. However, there are significant conflicts between the huge market demand and strong public opposition. It is imperative to examine the public perception of waste-to-energy, especially for developing countries where a large number of projects are under construction or have been approved. The public perception of waste-to-energy was carried out by a questionnaire survey in this research. A total of 650 questionnaires were distributed and 629 questionnaires were returned, with a response rate of 96.8%. The results show that the public showed general concern in regard to environmental issues. Respondents had an overall positive attitude towards waste-to-energy, but it varied according to the demographic details of residents, such as age, education, and income. Recognition level of the benefits was higher than the concern of associated risks. Multiple linear regression shows that awareness of environmental issues had no impact on public attitude towards waste-to-energy, while public awareness and perceived benefits had notable positive impacts. Perceived risks had a positive correlation with public attitude. In order to promote the development of MSW incinerators, the government should make more publicity efforts. Rural residents, people over 50 years old, and people with low education and low income are the major groups which should be focused on to enhance the public perception. The findings provide a theoretical and practical reference for enhancing the social acceptance of waste-to-energy development.


Subject(s)
Public Opinion , Waste Management/methods , Attitude , China , Humans , Incineration , Middle Aged , Rural Population , Solid Waste/analysis , Surveys and Questionnaires , Young Adult
15.
Biotechnol Biofuels ; 12: 151, 2019.
Article in English | MEDLINE | ID: mdl-31236138

ABSTRACT

BACKGROUND: During inevitable light/dark cycle, lipid productivity of outdoor microalgae photoautotrophic cultivation is lowered by nightly biomass and lipid loss. To minimize, or even reverse the nightly lipid loss, it was expected that lipid accumulation would not cease, even if at night. Without relying on photosynthesis and organic matter in media, endogenous lipid accumulation that consumes energy and carbon sources derived from cells themselves, namely endogenous accumulation, is the only way for lipid production. The main aims of the present study was to characteristic endogenously accumulated lipid, confirm feasibility to reverse nightly lipid loss, and determine optimal conditions and its quality suitability for biodiesel feedstock production under stress conditions. RESULTS: Chlorella vulgaris SDEC-3M ability to rapidly accumulated lipid under stress conditions was cultivated for 12 h in darkness, and the effects of various conditions on lipid accumulation and biomass loss were analyzed. Under non-stress conditions, lipid contents dropped. Under certain stress conditions, conversely, the lipid contents were substantially improved so that net nightly endogenous lipid accumulation was observed. Under the optimal conditions (aeration mode with 0.10 vvm and 15% CO2, 5-10 mg L-1 of NO3 --N, 30-35 °C, approximate 2500 mg L-1 of biomass), the lipid content was doubled and increased lipid was approximately 180 mg L-1. Among stress conditions, N-deficiency had the most significant effect on endogenous lipid accumulation, and the optimum results were characterized under relatively low-N concentrations. Higher consistency between loss in carbohydrate and gain in lipid confirmed accumulated lipid endogenously conversed from carbohydrate. Based on the analyses of fatty acids profiles and prediction of kinematic viscosity, specific gravity, cloud point, cetane number and iodine value, it was confirmed that the quality of lipid obtained under optimal conditions complied with biodiesel quality standards. CONCLUSION: Via triggering endogenous lipid accumulation by stress conditions, even in darkness, SDEC-3M can synthesize enough lipid suitable for biodiesel feedstock. It implies that the lipid accumulation phase in two-phase strategy can be scheduled at night, and following biomass production stage in light, which should be a solution to improve the lipid yield and quality of large-scale outdoor photoautotrophic microalgae cultivation for biodiesel production.

16.
Biomed Res Int ; 2018: 4375170, 2018.
Article in English | MEDLINE | ID: mdl-30671452

ABSTRACT

The mutagenesis is an emerging strategy for screening microalgal candidates for CO2 biofixation and biomass production. In this study, by 96-well microplates-UV mutagenesis, a mutant stemmed from Scenedesmus obliquus was screened and named as SDEC-1M. To characterize SDEC-1M, it was cultivated under air and high level CO2 (15% v/v), and its parental strain (PS) was considered as control. Growth characterizations showed that SDEC-1M grew best in high level CO2. It indicated that the mutant had high CO2 tolerance (HCT) and growth potential under high level CO2. Richer total carbohydrate content (37.26%) and lipid content (24.80%) demonstrated that, compared to its parental strain, SDEC-1M was apt to synthesize energy storage materials, especially under high CO2 level. Meanwhile, the highest light conversion efficiency (approximately 18 %) was also obtained. Thus, the highest overall biomass productivities were achieved in SDEC-1M under high level CO2, largely attributed to that the highest productivities of total lipid, total carbohydrate, and crude protein were also achieved in the meantime. By modified UV, therefore, mutagenized SDEC-1M was the better candidate for CO2 biofixation and biofuel production than its parental strain.


Subject(s)
Carbon Dioxide/chemistry , Microalgae/chemistry , Microalgae/radiation effects , Mutation/radiation effects , Ultraviolet Rays/adverse effects , Biofuels , Biomass , Carbohydrates/chemistry , Lipids/chemistry , Proteins/chemistry , Scenedesmus/chemistry , Scenedesmus/radiation effects
17.
Environ Technol ; 36(5-8): 622-7, 2015.
Article in English | MEDLINE | ID: mdl-25220169

ABSTRACT

Heterogeneous KOH/Al2O3 catalysts, synthesized by the wet impregnation method with different KOH loadings (20-40 wt%) and calcination temperatures from 400°C to 800°C, were used to produce biodiesel from Chlorella vulgaris biomass by in situ transesterification. The highest yield of biodiesel of 89.53±1.58% was achieved at calcination temperature of 700°C for 2 h and 35 wt% loading of KOH, and at the optimal reaction condition of 10 wt% of catalyst content, 8 mL/g of methanol to biomass ratio and at 60°C for 5 h. The characteristics of the catalysts were analysed by X-ray diffraction, scanning electron microscopy and Brunauer-Emmett-Teller.


Subject(s)
Aluminum Oxide , Biofuels , Chlorella vulgaris/metabolism , Hydroxides , Microalgae/metabolism , Potassium Compounds , Biomass , Catalysis , Esterification , Methanol/metabolism , Microscopy, Electron, Scanning , X-Ray Diffraction
18.
FEMS Microbiol Lett ; 323(1): 35-43, 2011 Oct.
Article in English | MEDLINE | ID: mdl-22092678

ABSTRACT

Plant pathogens usually promote pathogenesis by secreting effector proteins into host plant cells. One of the secreted effectors of Pseudomonas syringae pv. phaseolicola, the causative agent of halo-blight disease in common bean (Phaseolus vulgaris), HopF1, activates effector-triggered immunity (ETI) in a bean cultivar containing R1 resistance gene, but displays virulence function in a bean cultivar without the R1 gene. The virulence mechanism of the effector remained unknown, although it was identified more than a decade ago. Here we demonstrated that HopF1 can inhibit pathogen-associated molecular pattern-triggered immunity (PTI) in a susceptible bean cultivar Tendergreen. HopF1 directly interacted with two RPM1-interacting protein 4 (RIN4) orthologs of bean, PvRIN4a and PvRIN4b. Like RIN4 in Arabidopsis, both PvRIN4 orthologs negatively regulated the PTI responses in bean. However, the virulence function of HopF1 was enhanced in Tendergreen silencing PvRIN4. Furthermore, silencing PvRIN4a compromised the avrß1-induced hypersensitive response (HR), which previously was reported to be suppressed by HopF1. Together, these results demonstrated that PvRIN4 orthologs were not the virulence target of HopF1 for inhibiting PTI, but probably for interfering with ETI.


Subject(s)
Host-Pathogen Interactions , Immune Evasion , Phaseolus/immunology , Phaseolus/microbiology , Plant Proteins/metabolism , Pseudomonas syringae/pathogenicity , Virulence Factors/metabolism , Brassica rapa , Virulence
19.
Mol Biol Rep ; 37(4): 1781-6, 2010 Apr.
Article in English | MEDLINE | ID: mdl-19585270

ABSTRACT

A nucleic acid sequence MC, encoding Momordica Chanrantia anti-hyperglycaemic peptide MC6 (accession: AAX06814) synthesized according to Escherichia coli preferred codons, was cloned and expressed in E. coli. Recombinant protein pQE8-MC (about 3.5 kDa) was purified and analyzed by 20% SDS-PAGE and western blot. It revealed that the expressed pQE8-MC had good solubility in aqueous media. An HPLC assay was used to confirm the expression of pQE8-MC. Subsequent pharmacological activity assay revealed a significant hypoglycemic effect of low dose treatments of pQE8-MC on male kunming mice. Four hours after an intravenous tail injection, the blood sugar levels of mice treated with pQE8-MC saline solution A3 (1 mg/kg BW) decreased greatly (P < 0.01) relative to the levels of a control group. This suggests that pQE8-MC, expressed in bioengineered E. coli, has a similar hypoglycemic function to the natural protein MC6 from M. Chanrantia. These results reveal the possibility of using bio-engineered bacteria as an anti-diabetic agent.


Subject(s)
Escherichia coli/metabolism , Hyperglycemia/drug therapy , Momordica/chemistry , Peptides/metabolism , Peptides/therapeutic use , Alloxan , Animals , Blood Glucose/drug effects , Chromatography, High Pressure Liquid , Diabetes Mellitus, Experimental/blood , Diabetes Mellitus, Experimental/drug therapy , Electrophoresis, Polyacrylamide Gel , Male , Mice , Peptides/isolation & purification , Peptides/pharmacology , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use
20.
J Environ Sci (China) ; 19(5): 546-52, 2007.
Article in English | MEDLINE | ID: mdl-17915682

ABSTRACT

Alga-lysing bacteria have been paid much attention to in recent years. In this study, the alga-lysing strain P05 which was isolated from an immobilizing biosystem was immobilized by coke and elastic filler, forming two biological reactors. The removal efficiencies of algae, NH4(+)-N and organic matter using the two reactors were studied. The results showed that strain P05 was an ideal algal-lysing bacteria strain because it was easy to be immobilized by coke and elastic filler which are of cheap, low biodegradability and the simple immobilization procedure. After 7 d filming, the biological film could be formed and the reactors were used to treat the eutrophic water. These two reactors were of stability and high effect with low cost and easy operation. The optimal hydraulic retention time of each reactor was 4 h. The algae removal rates were 80.38% and 82.1% (in term of Chl-a) of coke reactor and filler reactor, respectively. And that of NH4(+)-N were 52.3% and 52.7%. The removal rates of COD(Mn) were 39.03% and 39.64%. The strain P05 was identified as Bacillus sp. by PCR amplification of the 16S rRNA gene, BLAST analysis, and comparison with sequences in the GenBank nucleotide database.


Subject(s)
Bacillus/physiology , Bioreactors , Eukaryota , Bacillus/isolation & purification , Biofilms , Chlorophyll/metabolism , Chlorophyll A , DNA, Bacterial/genetics , Eukaryota/metabolism , Eutrophication , Phylogeny , Quaternary Ammonium Compounds/metabolism , RNA, Ribosomal, 16S/genetics , Sequence Analysis, RNA , Waste Disposal, Fluid/methods , Water Pollutants/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...