Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 432
Filter
1.
Plant Physiol Biochem ; 215: 108947, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39106768

ABSTRACT

The effectiveness of pyraclostrobin (Pyr) and azoxystrobin (Azo) with highly targeting the rice blast is noteworthy, but they have varied toxic levels towards non-target aquatic organisms. Nevertheless, the toxic selectivity and mechanism of non-target plants, specifically rice, remain uncertain. In this study, we investigated the potential phytotoxic effects of Pyr and Azo on rice seedlings, including plant morphology, plant growth, physiological and biochemical changes. The findings revealed that both Pyr and Azo caused toxic effects on rice, resulting in symptoms of chlorosis and inhibited growth. The toxicity of Azo was found to be more severe when applied at the recommended field dose. Disruption of oxidative stress could significantly impact the demonstrated levels of REC, leading to a decrease in photosynthetic pigments and potentially culminating in cell death. Furthermore, the toxic effect of Azo had a greater impact on rice leaves compared to Pyr at treatments of 400, 800, 1600, and 4000 mg/L. However, the in vitro cytotoxicity of Azo on rice leaves was lower than that of Pyr. Therefore, it can be inferred that the mechanism of phytotoxicity of Azo is directly linked to the increased accumulation of the compound on the leaf tips and edges. Additionally, the positive effects observed on plant morphology and growth parameters suggest that the mixed application of plant growth regulators (sodium nitrophenolate aqueous solution of 14 mg/L and diethyl aminoethyl hexanoat of 50 mg/L) can be a promising approach to mitigate the rice phytotoxicity of Azo at 400 and 800 mg/L.

2.
Biomed Pharmacother ; 178: 117252, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39098176

ABSTRACT

Chimeric antigen receptor T (CAR-T) cell therapy has shown promise in treating hematological malignancies and certain solid tumors. However, its efficacy is often hindered by negative relapses resulting from antigen escape. This review firstly elucidates the mechanisms underlying antigen escape during CAR-T cell therapy, including the enrichment of pre-existing target-negative tumor clones, antigen gene mutations or alternative splicing, deficits in antigen processing, antigen redistribution, lineage switch, epitope masking, and trogocytosis-mediated antigen loss. Furthermore, we summarize various strategies to overcome antigen escape, evaluate their advantages and limitations, and propose future research directions. Thus, we aim to provide valuable insights to enhance the effectiveness of CAR-T cell therapy.


Subject(s)
Antigens, Neoplasm , Immunotherapy, Adoptive , Neoplasms , Receptors, Chimeric Antigen , Humans , Immunotherapy, Adoptive/methods , Receptors, Chimeric Antigen/immunology , Antigens, Neoplasm/immunology , Neoplasms/immunology , Neoplasms/therapy , Animals , T-Lymphocytes/immunology , Tumor Escape/immunology
3.
EClinicalMedicine ; 75: 102769, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39165498

ABSTRACT

Background: In order to address the low compliance and dissatisfied specificity of low-dose computed tomography (LDCT), efficient and non-invasive approaches are needed to complement its limitations for lung cancer screening and management. The ASCEND-LUNG study is a prospective two-stage case-control study designed to evaluate the performance of a liquid biopsy-based comprehensive lung cancer screening and post-screening pulmonary nodules management system. Methods: We aimed to develop a comprehensive lung cancer system called Peking University Lung Cancer Screening and Management System (PKU-LCSMS) which comprises a lung cancer screening model to identify specific populations requiring LDCT and an artificial intelligence-aided (AI-aided) pulmonary nodules diagnostic model to classify pulmonary nodules following LDCT. A dataset of 465 participants (216 cancer, 47 benign, 202 non-cancer control) were used for the two models' development phase. For the lung cancer screening model development, cancer participants were randomly split at a ratio of 1:1 into the train and validation cohorts, and then non-cancer controls were age-matched to the cancer cases in a 1:1 ratio. Similarly, for the AI-aided pulmonary nodules model, cancer and benign participants were also randomly divided at a ratio of 2:1 into the train and validation cohorts. Subsequently, during the model validation phase, sensitivity and specificity were validated using an independent validation cohort consisting of 291 participants (140 cancer, 25 benign, 126 non-cancer control). Prospectively collected blood samples were analyzed for multi-omics including cell-free DNA (cfDNA) methylation, mutation, and serum protein. Computerized tomography (CT) images data was also obtained. Paired tissue samples were additionally analyzed for DNA methylation, DNA mutation, and messenger RNA (mRNA) expression to further explore the potential biological mechanisms. This study is registered with ClinicalTrials.gov, NCT04817046. Findings: Baseline blood samples were evaluated for the whole screening and diagnostic process. The cfDNA methylation-based lung cancer screening model exhibited the highest area under the curve (AUC) of 0.910 (95% CI, 0.869-0.950), followed by the protein model (0.891 [95% CI, 0.845-0.938]) and lastly the mutation model (0.577 [95% CI, 0.482-0.672]). Further, the final screening model, which incorporated cfDNA methylation and protein features, achieved an AUC of 0.963 (95% CI, 0.942-0.984). In the independent validation cohort, the multi-omics screening model showed a sensitivity of 99.2% (95% CI, 0.957-1.000) at a specificity of 56.3% (95% CI, 0.472-0.652). For the AI-aided pulmonary nodules diagnostic model, which incorporated cfDNA methylation and CT images features, it yielded a sensitivity of 81.1% (95% CI, 0.732-0.875), a specificity of 76.0% (95% CI, 0.549-0.906) in the independent validation cohort. Furthermore, four differentially methylated regions (DMRs) were shared in the lung cancer screening model and the AI-aided pulmonary nodules diagnostic model. Interpretation: We developed and validated a liquid biopsy-based comprehensive lung cancer screening and management system called PKU-LCSMS which combined a blood multi-omics based lung cancer screening model incorporating cfDNA methylation and protein features and an AI-aided pulmonary nodules diagnostic model integrating CT images and cfDNA methylation features in sequence to streamline the entire process of lung cancer screening and post-screening pulmonary nodules management. It might provide a promising applicable solution for lung cancer screening and management. Funding: This work was supported by Science, Science, Technology & Innovation Project of Xiongan New Area, Beijing Natural Science Foundation, CAMS Innovation Fund for Medical Sciences (CIFMS), Clinical Medicine Plus X-Young Scholars Project of Peking University, the Fundamental Research Funds for the Central Universities, Research Unit of Intelligence Diagnosis and Treatment in Early Non-small Cell Lung Cancer, Chinese Academy of Medical Sciences, National Natural Science Foundation of China, Peking University People's Hospital Research and Development Funds, National Key Research and Development Program of China, and the fundamental research funds for the central universities.

4.
BMC Med ; 22(1): 342, 2024 Aug 26.
Article in English | MEDLINE | ID: mdl-39183296

ABSTRACT

BACKGROUND: Early detection and treatment are effective methods for the management of oral squamous cell carcinoma (OSCC), which can be facilitated by the detection of tumor-specific OSCC biomarkers. The epidermal growth factor receptor (EGFR) and programmed death-ligand 1 (PD-L1) are important therapeutic targets for OSCC. Multispectral fluorescence molecular imaging (FMI) can facilitate the detection of tumor multitarget expression with high sensitivity and safety. Hence, we developed Nimotuzumab-ICG and Atezolizumab-Cy5.5 imaging probes, in combination with multispectral FMI, to sensitively and noninvasively identify EGFR and PD-L1 expression for the detection and comprehensive treatment of OSCC. METHODS: The expression of EGFR and PD-L1 was analyzed using bioinformatics data sources and specimens. Nimotuzumab-ICG and Atezolizumab-Cy5.5 imaging probes were developed and tested on preclinical OSCC cell line and orthotopic OSCC mouse model, fresh OSCC patients' biopsied samples, and further clinical mouthwash trials were conducted in OSCC patients. RESULTS: EGFR and PD-L1 were specifically expressed in human OSCC cell lines and tumor xenografts. Nimotuzumab-ICG and Atezolizumab-Cy5.5 imaging probes can specifically target to the tumor sites in an in situ human OSCC mouse model with good safety. The detection sensitivity and specificity of Nimotuzumab-ICG in patients were 96.4% and 100%, and 95.2% and 88.9% for Atezolizumab-Cy5.5. CONCLUSIONS: EGFR and PD-L1 are highly expressed in OSCC, the combination of which is important for a precise prognosis of OSCC. EGFR and PD-L1 expression can be sensitively detected using the newly synthesized multispectral fluorescence imaging probes Nimotuzumab-ICG and Atezolizumab-Cy5.5, which can facilitate the sensitive and specific detection of OSCC and improve treatment outcomes. TRIAL REGISTRATION: Chinese Clinical Trial Registry, ChiCTR2100045738. Registered 23 April 2021, https://www.chictr.org.cn/bin/project/edit?pid=125220.


Subject(s)
Antibodies, Monoclonal, Humanized , B7-H1 Antigen , Carcinoma, Squamous Cell , ErbB Receptors , Mouth Neoplasms , Optical Imaging , Humans , B7-H1 Antigen/metabolism , Animals , Mouth Neoplasms/drug therapy , Mouth Neoplasms/diagnosis , Optical Imaging/methods , Antibodies, Monoclonal, Humanized/therapeutic use , Mice , Female , Carcinoma, Squamous Cell/drug therapy , Carcinoma, Squamous Cell/diagnosis , Male , Cell Line, Tumor , Middle Aged , Molecular Imaging/methods , Biomarkers, Tumor/metabolism
5.
Adv Mater ; : e2404534, 2024 Aug 25.
Article in English | MEDLINE | ID: mdl-39183503

ABSTRACT

Large skin wounds, with extensive surface area and deep vertical full-thickness involvement, can pose significant challenges in clinical settings. Traditional routes for repairing skin wounds encompass three hallmarks: 1) scab formation for hemostasis; 2) proliferation and migration of epidermal cells for wound closure; 3) proliferation, migration, and functionalization of fibroblasts and endothelial cells for dermal remodeling. However, this route face remarkable challenges to healing large wounds, usually leading to disordered structures and loss of functions in the regenerated skin, due to limited control on the transition among the three stages. In this work, an implantable bioelectronics is developed that enables the synchronization of the three stages, offering accelerated and high-quality healing of large skin wounds. The system efficiently electro-transfect local cells near the wounds, forcing cellular proliferation, while providing a 3D porous environments for synchronized migration of epidermal and dermal cells. In vivo experiments demonstrated that the system achieved synchronous progression of multiple layers within the wounds, leading to the reconstruction of a complete skin structure similar to healthy skin, which presents a new avenue for the clinical translation of large wound healing.

6.
ACS Omega ; 9(27): 29471-29477, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-39005790

ABSTRACT

During production, agricultural products are often susceptible to potential harm caused by residual traces of pesticides. Oxine-copper is a broad spectrum and efficient protective fungicide widely used in the production of fruits and vegetables. The present study was carried out to profile the dissipation behaviors and residues of oxine-copper on cucumber and watermelon using QuEChERS pretreatment and UPLC-MS/MS. Its storage stability and dietary risk assessment were also estimated. The method validation displayed good linearity (R 2 ≥ 0.9980), sensitivity (limits of quantification ≤0.01 mg/kg), and recoveries (75.5-95.8%) with relative standard deviations of 2.27-8.26%. According to first-order kinetics, the half-lives of oxine-copper in cucumber and watermelon were 1.77-2.11 and 3.57-4.68 d, respectively. The terminal residues of oxine-copper in cucumber and watermelon samples were within <0.01-0.264 and <0.01-0.0641 mg/kg, respectively. Based on dietary risk assessment, the estimated long-term dietary risk probability value of oxine-copper in cucumber and watermelon is 64.11%, indicating that long-term consumption of cucumber and watermelon contaminated with oxine-copper would not pose dietary risks to the general population. The results provide scientific guidance for the rational utilization of oxine-copper in field ecosystems of cucumber and watermelon.

7.
Ecotoxicology ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026048

ABSTRACT

The use of some organophosphate insecticides is restricted or even banned in paddy fields due to their high toxicity to aquatic organisms. The aim of this study is to elucidate the main pathways and target organs of organophosphate insecticide toxicity to fish exposed via different routes by integrating histopathological and biochemical techniques. Using malathion as the model drug, when the dosage is 20-60 mg/L, the toxicity of whole body and head immersion drugs to zebrafish is much higher than that of trunk immersion drugs. A dose of 21.06-190.44 mg/kg of malathion feed was fed to adult zebrafish. Although the dosage was already high, no obvious toxicity was observed. Therefore, we believe that the drug mainly enters the fish body through the gills. When exposed to a drug solution of 20 mg/L and 60 mg/L, the fish showed significant neurological behavioral abnormalities, and the pathological damage to key organs and brain tissue was the most severe, showing obvious vacuolization and the highest residual amount (8.72-47.78 mg/L). The activity of acetylcholinesterase was the most inhibited (54.69-74.68%). Therefore, brain tissue is the key toxic target organ of malathion in fish. In addition, we compared the bioaccumulation effects of different water-soluble organophosphorus insecticides in fish and their toxic effects. We found that the higher the water solubility of organophosphorus insecticides, the lower their toxicity to fish.

8.
Pest Manag Sci ; 2024 Jul 20.
Article in English | MEDLINE | ID: mdl-39032156

ABSTRACT

BACKGROUND: Environmental microorganisms are major contributors to the development and spread of disease. Chemical disinfection can inhibit pathogens and play a preventive role against diseases. In agriculture, prolonging the floating time of chemical pesticides in the air has a positive effect on the control of airborne diseases. However, the interaction of chemical pesticides with airborne pathogens is not yet known. RESULTS: Here, triazole fungicide was transformed into stable smoke aerosols in order to assess the feasibility of employing phase transition release pesticides for air disinfection. The phase transition had a minimal impact on hexaconazole (Hexa) and myclobutanil (Mycl), with their smoke formation rates remaining consistently >90%. In microscopic morphology, triadimenol (Tria) and epoxiconazole (Epox) are solid, and tebuconazole (Tebu), Hexa, Mycl and difenoconazole (Dife) are liquid. Liquid smoke has advantages over solid smoke in the inhibition of environmental pathogens. The floatability and spatial distribution of fungicide aerosol were optimized by the combination of smoke particles with different properties, so that the fungicide aerosol could meet the conditions of practical application. In practical applications, smoke exhibits a gentler deposition process at the target interface compared to spray, along with a more homogeneous distribution of fungicides. Moreover, fungicide smoke demonstrates superior control efficacy and leaves behind lower residual amounts on fruit. CONCLUSION: In conclusion, the implementation of fungicide phase transition as a smoke aerosol offers a viable approach to effectively suppress pathogen aerosols and enhance the control of airborne diseases. © 2024 Society of Chemical Industry.

9.
Lung Cancer ; 194: 107889, 2024 Aug.
Article in English | MEDLINE | ID: mdl-39029358

ABSTRACT

OBJECTIVES: To investigate the variability and diagnostic efficacy of respiratory-gated (RG) PET/CT based radiomics features compared to ungated (UG) PET/CT in the differentiation of non-small cell lung cancer (NSCLC) and benign lesions. METHODS: 117 patients with suspected lung lesions from March 2020 to May 2021 and consent to undergo UG PET/CT and chest RG PET/CT (including phase-based quiescent period gating, pQPG and phase-matched 4D PET/CT, 4DRG) were prospectively included. 377 radiomics features were extracted from PET images of each scan. Paired t test was used to compare UG and RG features for inter-scan variability analysis. We developed three radiomics models with UG and RG features (i.e. UGModel, pQPGModel and 4DRGModel). ROC curves were used to compare diagnostic efficiencies, and the model-level comparison of diagnostic value was performed by five-fold cross-validation. A P value < 0.05 was considered as statistically significant. RESULTS: A total of 111 patients (average age ± standard deviation was 59.1 ± 11.6 y, range, 29 - 88 y, and 63 were males) with 209 lung lesions were analyzed for features variability and the subgroup of 126 non-metastasis lesions in 91 patients without treatment before PET/CT were included for diagnosis analysis. 101/377 (26.8 %) 4DRG features and 82/377 (21.8 %) pQPG features showed significant difference compared to UG features (both P<0.05). 61/377 (16.2 %) and 59/377 (15.6 %) of them showed significantly better discriminant ability (ΔAUC% (i.e. (AUCRG - AUCUG) / AUCUG×100 %) > 0 and P<0.05) in malignant recognition, respectively. For the model-level comparison, 4DRGModel achieved the highest diagnostic efficacy (sen 73.2 %, spe 87.3 %) compared with UGModel (sen 57.7 %, spe 76.4 %) and pQPGModel (sen 63.4 %, spe 81.8 %). CONCLUSION: RG PET/CT performs better in the quantitative assessment of metabolic heterogeneity for lung lesions and the subsequent diagnosis in patients with NSCLC compared with UG PET/CT.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Positron Emission Tomography Computed Tomography , Humans , Positron Emission Tomography Computed Tomography/methods , Lung Neoplasms/diagnosis , Lung Neoplasms/diagnostic imaging , Lung Neoplasms/pathology , Male , Female , Middle Aged , Aged , Carcinoma, Non-Small-Cell Lung/diagnostic imaging , Carcinoma, Non-Small-Cell Lung/diagnosis , Carcinoma, Non-Small-Cell Lung/pathology , Prospective Studies , Adult , Respiratory-Gated Imaging Techniques/methods , Aged, 80 and over , Radiomics
11.
Nat Aging ; 2024 Jul 23.
Article in English | MEDLINE | ID: mdl-39044033

ABSTRACT

How hematopoietic stem cells (HSCs) maintain metabolic homeostasis to support tissue repair and regeneration throughout the lifespan is elusive. Here, we show that CD38, an NAD+-dependent metabolic enzyme, promotes HSC proliferation by inducing mitochondrial Ca2+ influx and mitochondrial metabolism in young mice. Conversely, aberrant CD38 upregulation during aging is a driver of HSC deterioration in aged mice due to dysregulated NAD+ metabolism and compromised mitochondrial stress management. The mitochondrial calcium uniporter, a mediator of mitochondrial Ca2+ influx, also supports HSC proliferation in young mice yet drives HSC decline in aged mice. Pharmacological inactivation of CD38 reverses HSC aging and the pathophysiological changes of the aging hematopoietic system in aged mice. Together, our study highlights an NAD+ metabolic checkpoint that balances mitochondrial activation to support HSC proliferation and mitochondrial stress management to enhance HSC self-renewal throughout the lifespan, and links aberrant Ca2+ signaling to HSC aging.

12.
Cancer Commun (Lond) ; 44(7): 718-738, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38840551

ABSTRACT

BACKGROUND: Benzo[a]pyrene (B[a]P), a carcinogen pollutant produced by combustion processes, is present in the western diet with grilled meats. Chronic exposure of B[a]P in hepatocellular carcinoma (HCC) cells promotes metastasis rather than primary proliferation, implying an unknown mechanism of B[a]P-induced malignancy. Given that exosomes carry bioactive molecules to distant sites, we investigated whether and how exosomes mediate cancer-stroma communications for a toxicologically associated microenvironment. METHOD: Exosomes were isolated from B[a]P stimulated BEL7404 HCC cells (7404-100Bap Exo) at an environmental relevant dose (100 nmol/L). Lung pre-education animal model was prepared via injection of exosomes and cytokines. The inflammatory genes of educated lungs were evaluated using quantitative reverse transcription PCR array. HCC LM3 cells transfected with firefly luciferase were next injected to monitor tumor burdens and organotropic metastasis. Profile of B[a]P-exposed exosomes were determined by ceRNA microarray. Interactions between circular RNA (circRNA) and microRNAs (miRNAs) were detected using RNA pull-down in target lung fibroblasts. Fluorescence in situ hybridization and RNA immunoprecipitation assay was used to evaluate the "on-off" interaction of circRNA-miRNA pairs. We further developed an adeno-associated virus inhalation model to examine mRNA expression specific in lung, thereby exploring the mRNA targets of B[a]P induced circRNA-miRNA cascade. RESULTS: Lung fibroblasts exert activation phenotypes, including focal adhesion and motility were altered by 7404-100Bap Exo. In the exosome-educated in vivo model, fibrosis factors and pro-inflammatory molecules of are up-regulated when injected with exosomes. Compared to non-exposed 7404 cells, circ_0011496 was up-regulated following B[a]P treatment and was mainly packaged into 7404-100Bap Exo. Exosomal circ_0011496 were delivered and competitively bound to miR-486-5p in recipient fibroblasts. The down-regulation of miR-486-5p converted fibroblast to cancer-associated fibroblast via regulating the downstream of Twinfilin-1 (TWF1) and matrix metalloproteinase-9 (MMP9) cascade. Additionally, increased TWF1, specifically in exosomal circ_0011496 educated lungs, could promote cancer-stroma crosstalk via activating vascular endothelial growth factor (VEGF). These modulated fibroblasts promoted endothelial cells angiogenesis and recruited primary HCC cells invasion, as a consequence of a pre-metastatic niche formation. CONCLUSION: We demonstrated that B[a]P-induced tumor exosomes can deliver circ_0011496 to activate miR-486-5p/TWF1/MMP9 cascade in the lung fibroblasts, generating a feedback loop that promoted HCC metastasis.


Subject(s)
Benzo(a)pyrene , Carcinoma, Hepatocellular , Exosomes , Liver Neoplasms , RNA, Circular , Exosomes/metabolism , Exosomes/genetics , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/chemically induced , RNA, Circular/genetics , Animals , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/chemically induced , Mice , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Lung Neoplasms/metabolism , Lung Neoplasms/chemically induced , Cell Line, Tumor , MicroRNAs/genetics , MicroRNAs/metabolism , Fibroblasts/metabolism , Fibroblasts/drug effects , Fibroblasts/pathology , Lung/pathology , Lung/metabolism , Lung/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Tumor Microenvironment , Neoplasm Metastasis
13.
J Neural Eng ; 21(3)2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38842111

ABSTRACT

Objective. Multi-channel electroencephalogram (EEG) technology in brain-computer interface (BCI) research offers the advantage of enhanced spatial resolution and system performance. However, this also implies that more time is needed in the data processing stage, which is not conducive to the rapid response of BCI. Hence, it is a necessary and challenging task to reduce the number of EEG channels while maintaining decoding effectiveness.Approach. In this paper, we propose a local optimization method based on the Fisher score for within-subject EEG channel selection. Initially, we extract the common spatial pattern characteristics of EEG signals in different bands, calculate Fisher scores for each channel based on these characteristics, and rank them accordingly. Subsequently, we employ a local optimization method to finalize the channel selection.Main results. On the BCI Competition IV Dataset IIa, our method selects an average of 11 channels across four bands, achieving an average accuracy of 79.37%. This represents a 6.52% improvement compared to using the full set of 22 channels. On our self-collected dataset, our method similarly achieves a significant improvement of 24.20% with less than half of the channels, resulting in an average accuracy of 76.95%.Significance. This research explores the importance of channel combinations in channel selection tasks and reveals that appropriately combining channels can further enhance the quality of channel selection. The results indicate that the model selected a small number of channels with higher accuracy in two-class motor imagery EEG classification tasks. Additionally, it improves the portability of BCI systems through channel selection and combinations, offering the potential for the development of portable BCI systems.


Subject(s)
Brain-Computer Interfaces , Electroencephalography , Imagination , Electroencephalography/methods , Humans , Imagination/physiology , Algorithms , Movement/physiology
15.
Nanoscale ; 16(22): 10500-10521, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38757536

ABSTRACT

Gene therapy is a promising disease treatment approach by editing target genes, and thus plays a fundamental role in precision medicine. To ensure gene therapy efficacy, the effective delivery of therapeutic genes into specific cells is a key challenge. Electroporation utilizes short electric pulses to physically break the cell membrane barrier, allowing gene transfer into the cells. It dodges the off-target risks associated with viral vectors, and also stands out from other physical-based gene delivery methods with its high-throughput and cargo-accelerating features. In recent years, with the help of advanced micro/nanotechnology, micro/nanostructure-integrated electroporation (micro/nano-electroporation) techniques and devices have significantly improved cell viability, transfection efficiency and dose controllability of the electroporation strategy, enhancing its application practicality especially in vivo. This technical advancement makes micro/nano-electroporation an effective and versatile tool for gene therapy. In this review, we first introduce the evolution of electroporation technique with a brief explanation of the perforation mechanism, and then provide an overview of the recent advancements and prospects of micro/nano-electroporation technology in the field of gene therapy. To comprehensively showcase the latest developments of micro/nano-electroporation technology in gene therapy, we focus on discussing micro/nano-electroporation devices and current applications at both in vitro and in vivo levels. Additionally, we outline the ongoing clinical studies of gene electrotransfer (GET), revealing the tremendous potential of electroporation-based gene delivery in disease treatment and healthcare. Lastly, the challenges and future directions in this field are discussed.


Subject(s)
Electroporation , Genetic Therapy , Humans , Genetic Therapy/methods , Electroporation/methods , Animals , Gene Transfer Techniques , Nanotechnology , Nanostructures/chemistry , Transfection/methods
16.
Heliyon ; 10(7): e28954, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38601597

ABSTRACT

Evidence indicates that Baicalein can ameliorate renal interstitial fibrosis by inducing myofibroblast apoptosis and inhibit the RLS3-induced ferroptosis in melanocytes. However, the relationship between renal interstitial fibrosis and anti-ferroptosis affected by Baicalein remains unclear. In our study, the anti-fibrosis and anti-ferroptosis effects of Baicalein were assessed in a rat model induced by the UUO method in vivo, and the effects of Baicalein on Erastin-induced ferroptosis of renal MPC-5 cells were examined by Western blot of fibrosis-related and ferroptosis-related proteins in vitro. In the UUO-induced rat model, Baicalein decreased kidney weight loss, improved renal function assessed the biomarks of urinary albumin excretion, serum creatine, and BUN levels, and reduced renal tubular injury. Furthermore, Baicalein inhibited renal ferroptosis by reducing ROS and MDA levels and increasing SOD and GSH levels in the UUO rat model. In addition, Baicalein potently reduced the expression of fibrosis-related proteins such as TGF-ß1, a-SMA, and Smad-2 to prevent renal interstitial fibrosis, and increased the expression of ferroptosis-related proteins such as SLC7A11, GPX4, and FTH to inhibit ferroptosis both in vitro and in vivo. Taken together, Baicalein exerts anti-fibrosis activity by reducing the ferroptosis response on the UUO-induced rat model and renal MPC5 cells. Therefore, Baicalein, as a novel therapeutic method on kidney diseases with strong activity in suppressing ferroptosis, could be a potential alternative treatment for renal interstitial fibrosis.

17.
J Org Chem ; 89(7): 4406-4422, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38512313

ABSTRACT

The palladium-catalyzed sequential cross-coupling/annulation of ortho-vinyl bromobenzenes with aryl bromides generating phenanthrenes was characterized by density functional theory (DFT). The Pd(II)-Pd(IV) pathway (Path V) is shown to be less probable than the bimetallic pathway (Path I), the latter proceeding via the following six steps: oxidative addition, vinyl-C(sp2)-H activation, Pd(II)-Pd(II) transmetalation, C-C coupling, aryl-C(sp2)-H activation, and reductive elimination. The aryl-C(sp2)-H activation process acts as the rate-determining step (RDS) of the entire chemical transformation, with an activation free energy barrier of ca. 27.4-28.8 kcal·mol-1, in good agreement with the corresponding experimental data (phenanthrenes' yields of ca. 65-90% at 130 °C after 5 h of reaction). The K2CO3 additive effectively reduces the activation free energy barrier of the RDS through direct participation in the reaction while preferentially modulating the charge distributions and increasing the stability of corresponding intermediates and complexes along the reaction path. Furthermore, bonding and electronic structure analyses of the key structures indicate that the chemo- and regioselectivities of the reaction are strongly influenced by both electronic effects and steric hindrance.

18.
Front Psychiatry ; 15: 1342933, 2024.
Article in English | MEDLINE | ID: mdl-38463431

ABSTRACT

Objective: Major depressive disorder (MDD) sufferers frequently have psychotic symptoms, yet the underlying triggers remain elusive. Prior research suggests a link between insulin resistance (IR) and increased occurrence of psychotic symptoms. Hence, this study sought to investigate the potential association between psychotic symptoms in Chinese patients experiencing their first-episode drug-naïve (FEDN) MDD and the triglyceride glucose (TyG) index, an alternative measure of insulin resistance (IR). Methods: Between September 2016 and December 2018, 1,718 FEDN MDD patients with an average age of 34.9 ± 12.4 years were recruited for this cross-sectional study at the First Hospital of Shanxi Medical University in China. The study collected clinical and demographic data and included assessments of anxiety, depression, and psychotic symptoms using the 14-item Hamilton Anxiety Rating Scale (HAMA), the 17-item Hamilton Depression Rating Scale (HAMD-17), and the positive subscales of the Positive and Negative Syndrome Scale (PANSS), respectively. Measurements of metabolic parameters, fasting blood glucose (FBG), and thyroid hormones were also gathered. To assess the correlation between the TyG index and the likelihood of psychotic symptoms, the study used multivariable binary logistic regression analysis. Additionally, two-segmented linear regression models were employed to investigate possible threshold effects in case non-linearity relationships were identified. Results: Among the patients, 9.95% (171 out of 1,718) exhibited psychotic symptoms. Multivariable logistic regression analysis showed a positive correlation between the TyG index and the likelihood of psychotic symptoms (OR = 2.12, 95% CI: 1.21-3.74, P = 0.01) after adjusting for confounding variables. Moreover, smoothed plots revealed a nonlinear relationship with the TyG index, revealing an inflection point at 8.42. Interestingly, no significant link was observed to the left of the inflection point (OR = 0.50, 95% CI: 0.04-6.64, P = 0.60), whereas beyond this point, a positive correlation emerged between the TyG index and psychotic symptoms (OR = 2.42, 95% CI: 1.31-4.48, P = 0.01). Particularly, a considerable 142% rise in the probability of experiencing psychotic symptoms was found with each incremental elevation in the TyG index. Conclusions: Understanding the non-linear link between the TyG index and the risk of psychotic symptoms in Chinese patients with FEDN MDD highlights the potential for targeted therapeutic approaches. By acknowledging the threshold effect observed, there is an opportunity to mitigate risk factors associated with IR-related psychiatric comorbidities through tailored interventions. These preliminary results stress the need for further longitudinal research to solidify these insights and contribute to more effective therapeutic strategies.

19.
bioRxiv ; 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38352325

ABSTRACT

The "gut-brain axis" is emerging as an important target in Alzheimer's disease (AD). However, immunological mechanisms underlying this axis remain poorly understood. Using single-cell RNA sequencing of the colon immune compartment in the 5XFAD amyloid-ß (Aß) mouse model, we uncovered AD-associated changes in ribosomal activity, oxidative stress, and BCR/plasma cell activity. Strikingly, levels of colon CXCR4 + antibody secreting cells (ASCs) were significantly reduced. This corresponded with accumulating CXCR4 + B cells and gut-specific IgA + cells in the brain and dura mater, respectively. Consistently, a chemokine ligand for CXCR4, CXCL12, was expressed at higher levels in 5XFAD glial cells and in in silico analyzed human brain studies, supporting altered neuroimmune trafficking. An inulin prebiotic fiber diet attenuated AD markers including Aß plaques and overall frailty. These changes corresponded to an expansion of gut IgA + cells and rescued peripheral T regs levels. Our study points to a key glia-gut axis and potential targets against AD. Study Highlights: AD is associated with altered immune parameters in the gut of 5XFAD mice. 5 XFAD colon has reduced ASCs, including CXCR4 + cells with a migratory gene signature. 5XFAD brain gliosis includes increased CXCL12 expression. CXCR4 + B cells and gut-specific IgA + ASCs accumulate in the 5XFAD brain and/or dura mater. Inulin diet attenuates AD disease parameters while boosting IgA + cell and T reg levels.

20.
Ecotoxicol Environ Saf ; 270: 115874, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38176181

ABSTRACT

Realizing eco-friendly, long-term, and low-risk aphid control on Lycium barbarum (medicinal cash crop) using a Cynanchum komarovii extracts and eucalyptus oil-loaded microcapsules (EOMCs) formulation compositions is viable. In this study, the aim is to optimize the composition of Cynanchum komarovii extracts and EOMCs formulation for effective control of aphids, the release of EOMCs was controlled by changing the cross-linking degree of the shell to match the aphid control characteristics of Cynanchum komarovii extracts. Four types of polyamines were used as cross-linking agents for the preparation of EOMCs by interfacial polymerization. The bioactivity, wettability, and field application efficacy of Cynanchum komarovii extracts and different EOMCs formulation compositions were evaluated. These EOMCs exhibited an encapsulation efficiency exceeding 85 %. The control efficiency of the formulation compositions of microcapsules with a moderate release rate and Cynanchum komarovii extracts on aphids remained at 62.86 %, while the control efficiency of the combination of microcapsules with the fastest and slowest rates with Cynanchum komarovii extracts was only 48.62 % and 57.11 %, respectively. The formulation compositions of Cynanchum komarovii extracts with all four types of EOMCs were found to be safe for Chinese wolfberry plants. Overall, by selecting appropriate polyamines during fabrication, the release rate can be effectively controlled to achieve sustainable and low-risk aphid control in Lycium barbarum through compounding with selected microcapsules.


Subject(s)
Cynanchum , Lycium , Eucalyptol , Capsules , Risk Management , China , Polyamines
SELECTION OF CITATIONS
SEARCH DETAIL