Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
PeerJ ; 11: e16448, 2023.
Article in English | MEDLINE | ID: mdl-38025753

ABSTRACT

Background: To analyze individually and interactively critical risk factors, which are closely related to low bone mineral density (BMD) in patient with ankylosing spondylitis (AS). Methods: A total of 249 AS patients who visited China-Japan Friendship Hospital were included in this training set. Patients with questionnaire data, blood samples, X-rays, and BMD were collected. Logistic regression analysis was employed to identify key risk factors for low BMD in different sites, and predictive accuracy was improved by incorporating the selected significant risk factors into the baseline model, which was then validated using a validation set. The interaction between risk factors was analyzed, and predictive nomograms for low BMD in different sites were established. Results: There were 113 patients with normal BMD, and 136 patients with low BMD. AS patients with hip involvement are more likely to have low BMD in the total hip, whereas those without hip involvement are more prone to low BMD in the lumbar spine. Chest expansion, mSASSS, radiographic average grade of the sacroiliac joint, and hip involvement were significantly associated with low BMD of the femoral neck and total hip. Syndesmophytes, hip involvement and higher radiographic average grade of the sacroiliac joint increases the risk of low BMD of the femoral neck and total hip in an additive manner. Finally, a prediction model was constructed to predict the risk of low BMD in total hip and femoral neck. Conclusions: This study identified hip involvement was strongly associated with low BMD of the total hip in AS patients. Furthermore, the risk of low BMD of the femoral neck and total hip was found to increase in an additive manner with the presence of syndesmophytes, hip involvement, and severe sacroiliitis. This finding may help rheumatologists to identify AS patients who are at a high risk of developing low BMD and prompt early intervention to prevent fractures.


Subject(s)
Bone Diseases, Metabolic , Osteoporosis , Spondylitis, Ankylosing , Humans , Spondylitis, Ankylosing/complications , Bone Density , Osteoporosis/etiology , Bone Diseases, Metabolic/complications , Risk Factors
2.
Arch Virol ; 167(12): 2845-2850, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36214899

ABSTRACT

Stagonosporopsis cucurbitacearum is an important plant-pathogenic fungus that causes stem and leaf blight diseases in a variety of crops. Here, we report the characterization of a novel victorivirus, tentatively named "Stagonosporopsis cucurbitacearum victorivirus 1" (ScVV-1), isolated from the S. cucurbitacearum isolate M-7. The ScVV-1 genome is 5,165 bp in length with a predicted GC content of 60.1% and contains two large open reading frames (ORF 1 and ORF2) encoding putative proteins that share significant sequence similarity with coat proteins (CPs) and RNA-dependent RNA polymerases (RdRps) of mycoviruses of the family Totiviridae. The ScVV-1 RdRp appears to be translated using a stop-initiation pentanucleotide UAAUG sequence. Phylogenetic analysis based on CP and RdRp amino acid (aa) sequences both indicated that ScVV-1 belongs to the genus Victorivirus in the family Totiviridae. To our knowledge, this is the first full-length genome sequence of a victorivirus infecting S. cucurbitacearum.


Subject(s)
Ascomycota , Fungal Viruses , Totiviridae , Nicotiana/genetics , Phylogeny , Totiviridae/genetics , Ascomycota/genetics , Fungal Viruses/genetics , Open Reading Frames , Genome, Viral , RNA, Viral/genetics , RNA, Viral/chemistry , RNA, Double-Stranded
3.
Environ Entomol ; 51(4): 700-709, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35666204

ABSTRACT

The cigarette beetle, Lasioderma serricorne (Fabricius) (Coleoptera: Anobiidae), is a destructive stored product pest worldwide. Adult cigarette beetles are known to rely on host volatiles and pheromones to locate suitable habitats for oviposition and mating, respectively. However, little is known about the chemosensory mechanisms of these pests. Soluble chemoreception proteins are believed to initiate olfactory signal transduction in insects, which play important roles in host searching and mating behaviors. In this study, we sequenced the antennal transcriptome of L. serricorne and identified 14 odorant-binding proteins (OBPs), 5 chemosensory proteins (CSPs), and 2 Niemann-Pick C2 proteins (NPC2). Quantitative realtime PCR (qPCR) results revealed that several genes (LserOBP2, 3, 6, and 14) were predominantly expressed in females, which might be involved in specific functions in this gender. The five LserOBPs (LserOBP1, 4, 8, 10, and 12) that were highly expressed in the male antennae might encode proteins involved in specific functions in males. These findings will contribute to a better understanding of the olfactory system in this stored product pest and will assist in the development of efficient and environmentally friendly strategies for controlling L. serricorne.


Subject(s)
Coleoptera , Receptors, Odorant , Animals , Arthropod Antennae/metabolism , Coleoptera/genetics , Coleoptera/metabolism , Female , Gene Expression Profiling , Insect Proteins/genetics , Insect Proteins/metabolism , Male , Phylogeny , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Transcriptome
4.
Pest Manag Sci ; 77(3): 1392-1400, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33098218

ABSTRACT

BACKGROUND: Sheath blight, caused by Rhizoctonia solani, can be effectively controlled by application of the succinate dehydrogenase inhibitor thifluzamide. Although the risk of resistance to thifluzamide in R. solani had been reported, the thifluzamide-resistance mechanism and the evolution of thifluzamide-resistance in R. solani have not been investigated in detail. RESULTS: No differences were found between the sequences of proteins SDHA, SDHC, and SDHD in thifluzamide-sensitive isolates and thifluzamide-resistant mutants, but a single point mutation H249Y was found in SDHB. Two different types of thifluzamide-resistant R. solani mutants were characterized: homokaryotic, carrying only the resistance allele; and heterokaryotic, retaining the wild-type allele in addition to the resistance allele. The resistance level differed according to the nuclear composition at codon 249 in the sdhB gene. Molecular docking results suggested that the point mutation (H249Y) might significantly alter the affinity of thifluzamide and SDHB protein. Heterokaryotic mutants were able to evolve into a homokaryon when repeatedly cultured on agar media or rice plants in the presence of thifluzamide, but thifluzamide treatment had no effect on the genotypes of homokaryotic mutants or sensitive isolates. CONCLUSION: This study showed that H249Y in SDHB protein could cause thifluzamide resistance in R. solani. Fungicide application could promote heterokaryotic mutants to evolve into a homokaryon. © 2020 Society of Chemical Industry.


Subject(s)
Point Mutation , Rhizoctonia , Anilides , Molecular Docking Simulation , Plant Diseases , Rhizoctonia/genetics , Thiazoles
5.
Plant Physiol Biochem ; 146: 259-268, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31778931

ABSTRACT

The HD-ZIP Ⅳ transcription factors have been identified and functional characterized in many plant species. However, no tobacco HD-ZIP IV gene has been isolated, and it is not yet known whether HD-ZIP IV genes are involved in controlling flavonols accumulation in plants. Here, we cloned a HD ZIP gene named NtHDG2 from Nicotiana tabacum, which belongs to the class IV of HD-ZIP family, and the NtHDG2-GFP fusion protein is localized to the nucleus. We further observed that the flavonols contents in the NtHDG2 overexpression leaves increase to 1.9-4.5 folds of that in WT plants, but in the NtHDG2-RNAi plants the flavonols contents reduce to 20.9%-52.7% of that in WT plants. The transcriptions of one regulatory gene NtMYB12, and three structural genes (NtPAL, NtF3'H, NtF3GT), contributing to flavonols biosynthesis, were significantly induced by NtHDG2. However, the transcription level of NtNAC002, a flavonols biosynthesis repressor, was also significantly up-regulated in NtHDG2-overexpression lines, but significantly down-regulated in the RNAi lines, indicating that HDG2 regulates the synthesis of flavonols as a complex regulatory network. Moreover, ectopic expression of NtHDG2 gene promoted the transcription of several AP2/ERF genes, including NtERF1-5, NtERF109, NtDREB1, and NtCIPK11, which participate in regulating root development and resistance to abiotic stresses. Our findings reveal the new function of HD-ZIP IV transcription factors in flavonoids biosynthesis, and indicate that HD-ZIP IV members may play an important role in plant resistance to abiotic stress. The NtHDG2 gene provides a promising target for genetically manipulating to increase the amounts of flavonols in tobacco leaves.


Subject(s)
Nicotiana , Flavonols , Gene Expression Regulation, Plant , Homeodomain Proteins , Leucine Zippers , Plant Proteins , Stress, Physiological , Transcription Factors
6.
Pestic Biochem Physiol ; 147: 83-89, 2018 May.
Article in English | MEDLINE | ID: mdl-29933997

ABSTRACT

SYP-14288 is a novel fungicide developed by the Shenyang Research Institute of Chemical Industry in China. Although preliminary studies indicate that SYP-14288 is highly effective against 32 important plant pathogens belonging to a range of taxonomic groups, its mode of action remains unknown. In this study, we documented that SYP-14288 has excellent activity against all of the asexual life stages of the plant-pathogenic oomycete Phytophthora capsici, and is especially effective in blocking cyst germination and other life stages that require high energy consumption. In assays designed to determine the fungicide's mode of action, addition of ATP reduced SYP-14288 inhibition of P. capsici, which suggested that SYP-14288 inhibits ATP synthesis of the pathogen. This inference was confirmed in that treatment with SYP-14288 sharply reduced the ATP content in P. capsici. The respiration rate of P. capsici was positively correlated with the concentration of SYP-14288 or of the fungicide fluazinam (an uncoupler of oxidative phosphorylation), but increases in respiration were greater with SYP-14288 than with fluazinam. These results indicate that SYP-14288 is a promising fungicide that functions as an uncoupler of oxidative phosphorylation.


Subject(s)
Fungicides, Industrial/pharmacology , Oxidative Phosphorylation/drug effects , Phytophthora/drug effects , Uncoupling Agents/pharmacology , Adenosine Triphosphate/biosynthesis , Adenosine Triphosphate/pharmacology , Capsicum/microbiology , Mitochondria/drug effects , Mitochondria/metabolism , Phytophthora/growth & development , Phytophthora/metabolism , Reproduction, Asexual/drug effects
7.
Sci Rep ; 6: 24103, 2016 Apr 06.
Article in English | MEDLINE | ID: mdl-27050922

ABSTRACT

Phytophthora capsici is an important oomycete plant pathogen that causes significant losses worldwide. The carboxylic acid amide fungicide flumorph has shown excellent activity against oomycete plant pathogens. Despite its potential, there remains concern that the sexual reproduction of oomycete pathogens, which results in genetic recombination, could result in the rapid development of resistance to flumorph. The current study utilized an iTRAQ (isobaric tags for relative and absolute quantitation) based method to compare differences between the proteome of the parental P. capsici isolate PCAS1 and its sexual progeny S2-838, which exhibits significant resistance to flumorph. A total of 2396 individual proteins were identified, of these, 181 were considered to be associated with the adaptive response of P. capsici to flumorph. The subsequent bioinformatic analysis revealed that the adaptive response of P. capsici to flumorph was complex and regulated by multiple mechanisms, including utilising carbohydrate from the host environment to compensate for the cell wall stress induced by flumorph, a shift in energy generation, decreased amino acids biosynthesis, and elevated levels of proteins associated with the pathogen's response to stimulus and transmembrane transport. Moreover, the results of the study provided crucial data that could provide the basis for early monitoring of flumorph resistance in field populations of P. capsici.


Subject(s)
Adaptation, Physiological/drug effects , Fungicides, Industrial/pharmacology , Morpholines/pharmacology , Phytophthora/physiology , Plant Diseases/microbiology , Gene Ontology , Isotope Labeling , Molecular Sequence Annotation , Phytophthora/drug effects , Proteins/metabolism , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL
...