Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Instrum Meas ; 69(5): 1972-1980, 2020 May.
Article in English | MEDLINE | ID: mdl-32292210

ABSTRACT

This paper introduces a novel compact low-power amperometric instrumentation design with current-to-digital output for electrochemical sensors. By incorporating the double layer capacitance of an electrochemical sensor's impedance model, our new design can maintain performance while dramatically reducing circuit complexity and size. Electrochemical experiments with potassium ferricyanide, show that the circuit output is in good agreement with results obtained using commercial amperometric instrumentation. A high level of linearity (R2 = 0.991) between the circuit output and the concentration of potassium ferricyanide was also demonstrated. Furthermore, we show that a CMOS implementation of the presented architecture could save 25.3% of area, and 47.6% of power compared to a traditional amperometric instrumentation structure. Thus, this new circuit structure is ideally suited for portable/wireless electrochemical sensing applications.

2.
IEEE Sens J ; 18(19): 7899-7906, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30930698

ABSTRACT

The growing demand for personal healthcare monitoring requires a challenging combination of performance, size, power, and cost that is difficult to achieve with existing gas sensor technologies. This paper presents a new CMOS monolithic gas sensor microsystem that meets these requirements through a unique combination of electrochemical readout circuits, post-CMOS planar electrodes, and room temperature ionic liquid (RTIL) sensing materials. The architecture and design of the CMOS-RTIL-based monolithic gas sensor are described. The monolithic device occupies less than 0.5mm2 per sensing channel and incorporates electrochemical biasing and readout functions with only 1.4mW of power consumption. Oxygen was tested as an example gas, and results show that the microsystem demonstrates a highly linear response (R2 = 0.995) over a 0 - 21% oxygen concentration range, with a limit of detection of 0.06% and a 1 second response time. Monolithic integration reduces manufacturing cost and is demonstrated to improve limits of detection by a factor of five compared to a hybrid implementation. The combined characteristics of this device offer an ideal platform for portable/wearable gas sensing in applications such as air pollutant monitoring.

3.
Sensors (Basel) ; 17(1)2016 Dec 31.
Article in English | MEDLINE | ID: mdl-28042860

ABSTRACT

Modern biosensors play a critical role in healthcare and have a quickly growing commercial market. Compared to traditional optical-based sensing, electrochemical biosensors are attractive due to superior performance in response time, cost, complexity and potential for miniaturization. To address the shortcomings of traditional benchtop electrochemical instruments, in recent years, many complementary metal oxide semiconductor (CMOS) instrumentation circuits have been reported for electrochemical biosensors. This paper provides a review and analysis of CMOS electrochemical instrumentation circuits. First, important concepts in electrochemical sensing are presented from an instrumentation point of view. Then, electrochemical instrumentation circuits are organized into functional classes, and reported CMOS circuits are reviewed and analyzed to illuminate design options and performance tradeoffs. Finally, recent trends and challenges toward on-CMOS sensor integration that could enable highly miniaturized electrochemical biosensor microsystems are discussed. The information in the paper can guide next generation electrochemical sensor design.


Subject(s)
Biosensing Techniques/instrumentation , Biosensing Techniques/methods , Electrochemistry/instrumentation , Electrochemistry/methods , Dielectric Spectroscopy
4.
Anal Chem ; 88(3): 1959-64, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26705978

ABSTRACT

We have developed an ultrasensitive gas-detection method based on the measurement of a differential capacitance of electrified ionic liquid (IL) electrode interfaces in the presence and absence of adsorbed gas molecules. The observed change of differential capacitance has a local maximum at a certain potential that is unique for each type of gas, and its amplitude is related to the concentration of the gas molecules. We establish and validate this gas-sensing method by characterizing SO2 detection at ppb levels with less than 1.8% signal from other interfering species (i.e., CO2, O2, NO2, NO, SO2, H2O, H2, and cyclohexane, tested at the same concentration as SO2). This study opens a new avenue of utilizing tunable electrified IL-electrode interfaces for selective sensing of molecules with a kinetic size resolution of 0.1 Å.


Subject(s)
Gases/analysis , Ionic Liquids/chemistry , Carbon Dioxide/analysis , Cyclohexanes/analysis , Electrodes , Hydrogen/analysis , Kinetics , Nitric Oxide/analysis , Nitrogen Dioxide/analysis , Oxygen/analysis , Sulfur Dioxide/analysis , Water/analysis
5.
Article in English | MEDLINE | ID: mdl-23365939

ABSTRACT

Airborne pollution and explosive gases threaten human health and occupational safety, therefore generating high demand for a wearable autonomous multi-analyte gas sensor system for real-time environmental monitoring. This paper presents a system level solution through synergistic integration of sensors, electronics, and data analysis algorithms. Electrochemical sensors featuring ionic liquids were chosen to provide low-power room-temperature operation, rapid response, high sensitivity, good selectivity, and a long operating life with low maintenance. The system utilizes a multi-mode electrochemical instrumentation circuit that combines all signal condition functions within a single microelectronics chip to minimize system cost, size and power consumption. Embedded sensor array signal processing algorithms enable gas classification and concentration estimation within a real-world mixture of analytes. System design and integration methodologies are described, and preliminary results are shown for a first generation SO(2) sensor and a thumb-drive sized prototype system.


Subject(s)
Air Pollutants/analysis , Environmental Monitoring/instrumentation , Algorithms , Computer Systems , Electrochemical Techniques/instrumentation , Environmental Monitoring/statistics & numerical data , Equipment Design , Explosive Agents/analysis , Humans , Sulfur Dioxide/analysis
6.
Article in English | MEDLINE | ID: mdl-22255411

ABSTRACT

Tethered bilayer lipid membranes (tBLM) offer a promising means to immobilize membrane proteins for sensor applications and study biological phenomena including membrane-nanoparticle interactions. tBLM biointerfaces are typically characterized using electrochemical impedance spectroscopy (EIS) in the 1 mHz to 1 Hz range due to interface parasitics. To enable rapid characterization of biointerfaces for high throughput applications, this paper introduces a method for high resolution EIS characterization of tBLMs at higher frequencies. The tBLM equivalent electrical model is analyzed, and the benefit of extracting the real portion of interface admittance is described. Mathematical analysis shows that the maximum frequency for measuring membrane resistance is a function of membrane characteristics and that small area membranes could enable measurement well into the kHz range, permitting observation of millisecond membrane protein activity in biosensor arrays.


Subject(s)
Biosensing Techniques , Lipid Bilayers , Dielectric Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL