Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Sci China Earth Sci ; 65(6): 1047-1056, 2022.
Article in English | MEDLINE | ID: mdl-35578665

ABSTRACT

Coronavirus disease 2019 (COVID-19) is the most serious infectious disease pandemic in the world in a century, and has had a serious impact on the health, safety, and social and economic development of all mankind. Since the earth entered the "Anthropocene", human activities have become the most important driving force of the evolution of the earth system. At the same time, the epidemic frequency of major human infectious diseases worldwide has been increasing, with more than 70% of novel diseases having zoonotic origins. The review of several major epidemics in human history shows that there is a common rule, i.e., changes in the natural environment have an important and profound impact on the occurrence and development of epidemics. Therefore, the impact of the natural environment on the current COVID-19 pandemic and its mechanisms have become scientific issues that need to be resolved urgently. From the perspective of the natural environment, this study systematically investigated several major issues concerning the environmental transmission and risk prevention of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). From a macroscopic temporal and spatial scale, the research focus on understand the impact of the destruction of the natural environment and global changes on the outbreak of infectious diseases; the threat of zoonotic diseases to human health; the regularity for virus diffusion, migration and mutation in environmental media; the mechanisms of virus transmission from animals and environmental media to humans; and environmental safety, secondary risk prevention and control of major epidemics. Suggestions were made for future key research directions and issues that need attention, with a view to providing a reference for the prevention and control of the global coronavirus disease 2019, and to improving the ability of response to major public health emergencies.

2.
Environ Technol ; 43(1): 21-33, 2022 Jan.
Article in English | MEDLINE | ID: mdl-32431242

ABSTRACT

Extracellular polymeric substance (EPS) is secreted by many organisms and makes up a significant constituent of natural organic matter in the environment. However, nothing is known about EPS's role in the reduction of pollutants by nano-sized zero-valent iron (NZVI). This research showed that the degradation kinetics of nitrobenzene (NB) by NZVI with EPS (0.0272 ± 0.006 min-1) were 2.27 times lower than that without EPS (0.0618 ± 0.006 min-1) in the first cycle, mainly due to competition for reactive sites on the NZVI surface and the complexation of EPS with Fe(II) and Fe(III). In the second and third cycle, the degradation kinetics of NB by NZVI alone decreased obviously, while those in the presence of EPS were preserved or accelerated. Comparative studies with a quinine model compound indicated that EPS did not function as the electron shuttle to transmit electrons effectively. X-ray photoelectron spectroscopy, scanning electron microscopy and X-ray diffraction results suggested that EPS could prevent the oxidation of NZVI and even expose more effective sites on the NZVI surface, thus leading to the preservation or enhancement of NZVI reactivity in the second and third NB degradation cycles. Moreover, we found that EPS also provided colloidal stability to NZVI particles, either by steric mechanisms or electrostatic repulsion. These results indicate that EPS can play an important role in the prolongation of NZVI reactivity during standing application.


Subject(s)
Iron , Water Pollutants, Chemical , Extracellular Polymeric Substance Matrix/chemistry , Kinetics , Nitrobenzenes , Water , Water Pollutants, Chemical/analysis
3.
Environ Sci Pollut Res Int ; 28(28): 37051-37059, 2021 Jul.
Article in English | MEDLINE | ID: mdl-34053039

ABSTRACT

The coronavirus disease 2019 (COVID-19) pandemic has brought unprecedented public health, and social and economic challenges. It remains unclear whether seasonal changes in ambient temperature will alter spreading trajectory of the COVID-19 epidemic. The probable mechanism on this is still lacking. This review summarizes the most recent research data on the effect of ambient temperature on the COVID-19 epidemic characteristic. The available data suggest that (i) mesophilic traits of viruses are different due to their molecular composition; (ii) increasing ambient temperature decreases the persistence of some viruses in aquatic media; (iii) a 1°C increase in the average monthly minimum ambient temperatures (AMMAT) was related to a 0.72% fewer mammalian individuals that would be infected by coronavirus; (iv) proportion of zoonotic viruses of mammals including humans is probably related to their body temperature difference; (v) seasonal divergence between the northern and southern hemispheres may be a significant driver in determining a waved trajectory in the next 2 years. Further research is needed to understand its effects and mechanisms of global temperature change so that effective strategies can be adopted to curb its natural effects. This paper mainly explores possible scientific hypothesis and evidences that local communities and authorities should consider to find optimal solutions that can limit the transmission of SARS-CoV-2 virus.


Subject(s)
COVID-19 , SARS-CoV-2 , Animals , Humans , Pandemics , Public Health , Temperature
4.
J Chromatogr A ; 1643: 462079, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-33780878

ABSTRACT

In the present study, a comprehensive and sensitive method for simultaneous determination of 21 PIs (nine benzophenones, eight amine co-initiators, and four thioxanthones) in human plasma using high-performance liquid chromatography coupled with tandem mass spectrometry was developed and validated. Two different pre-treatment approaches (liquid-liquid extraction (LLE) and LLE coupled with solid-phase extraction (SPE)) and eight extraction solvents were studied to optimize sample treatment to obtain good recoveries and reduce any matrix effects. The procedure of LLE+SPE was selected as final sample treatment procedure because it obtained higher recoveries as well as lower matrix effects than that performed by LLE alone. The recoveries of 21 target analytes at three spiked concentrations (0.05, 0.5, and 5 ng/mL) ranged from 81% to 109%. The intra- and inter-day relative standard deviations were between 2.5% and 13%. Accuracy and precision data indicated that the detection method was accurate and precise for most of the PIs. The linearities of the labeled dilution calibration curves at 10 concentration levels (iLOQ to 100 ng/mL or iLOQ to 200 ng/mL) were good with correlation coefficients ranged from 0.995 to 0.999. The method quantification limits were in the range of 1.7-16 pg/mL. The analytical method was applied to the analysis of PIs in 14 human plasma samples collected from pregnant women in Guangdong Province, China. Fifteen PIs were detected with total concentrations ranging from 318 to 2772 pg/mL. The ubiquitous contamination of human plasma with PIs suggests that there is widespread exposure to these compounds. Consequently, there should be increased awareness of these pollutants in the environment.


Subject(s)
Benzophenones/blood , Chromatography, High Pressure Liquid/methods , Xanthones/blood , Adult , Benzophenones/isolation & purification , Benzophenones/standards , Chromatography, High Pressure Liquid/standards , Environmental Pollutants/blood , Female , Healthy Volunteers , Humans , Limit of Detection , Liquid-Liquid Extraction , Pregnancy , Quality Control , Solid Phase Extraction , Tandem Mass Spectrometry/methods , Tandem Mass Spectrometry/standards , Thioxanthenes/blood , Thioxanthenes/isolation & purification , Thioxanthenes/standards , Xanthones/isolation & purification , Xanthones/standards
5.
Environ Res ; 196: 110984, 2021 05.
Article in English | MEDLINE | ID: mdl-33691157

ABSTRACT

Host nutrition is an important factor affecting disease progression. Selenium (Se) is an essential trace element for the human body with anti-inflammatory, antioxidant, and immune effects, and Se deficiency increases RNA-virus replication and virulent mutations, which lead to more severe tissue damage and symptoms. Low Se status in the host may be an important cause of health complications induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this article, we describe the metabolic mechanisms by which Se is involved in anti-inflammatory, antioxidant, and immune effects, and review the role and clinical effects of Se in viral infection. We then discuss the potential relationship between Se and coronavirus disease 2019 (COVID-19). The association between soil Se level and the incidence of COVID-19 was observed in different cities of Hubei Province. The incidence of COVID-19 was more than 10 times lower in Se-enriched cities (Enshi, Shiyan, and Xiangyang) than in Se-deficient cities (Suizhou and Xiaogan). Although the relationship between soil Se levels and the incidence of COVID-19 in Hubei still needs further study, these findings provide baseline information demonstrating the effect of Se levels on SARS-CoV-2, which could contribute to the prevention and management of COVID-19.


Subject(s)
COVID-19 , Selenium , Virus Diseases , Humans , Nutritional Status , SARS-CoV-2
6.
J Environ Sci (China) ; 100: 110-116, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33279024

ABSTRACT

As an aliphatic amino acid, cysteine (CYS) is diffuse in the living cells of plants and animals. However, little is known of its role in the reactivity of nano-sized zero-valent iron (NZVI) in the degradation of pollutants. This study shows that the introduction of CYS to the NZVI system can help improve the efficiency of reduction, with 30% more efficient degradation and a reaction rate constant nine times higher when nitrobenzene (NB) is used as probe compound. The rates of degradation of NB were positively correlated with the range of concentrations of CYS from 0 to 10 mmol/L. The introduction of CYS increased the maximum concentration of Fe(III) by 12 times and that of Fe(II) by four times in this system. A comparison of systems featuring only CYS or Fe(II) showed that the direct reduction of NB was not the main factor influencing its CYS-stimulated removal. The reduction in the concentration of CYS was accompanied by the generation of cystine (CY, the oxidized form of cysteine), and both eventually became stable. The introduction of CY also enhanced NB degradation due to NZVI, accompanied by the regeneration of CYS. This supports the claim that CYS can accelerate electron transfer from NZVI to NB, thus enhancing the efficiency of degradation of NB.


Subject(s)
Iron , Water Pollutants, Chemical , Cysteine , Electrons , Nitrobenzenes , Water Pollutants, Chemical/analysis
7.
Nanomaterials (Basel) ; 10(11)2020 Nov 13.
Article in English | MEDLINE | ID: mdl-33203023

ABSTRACT

Silver nanoparticles (AgNPs) are constituents of many consumer products, but the future of their production depends on ensuring safety. The stability of AgNPs in various physiological solutions and aging in storage may affect the accuracy of predicted nanoparticle toxicity. The goal of this study was to simulate the transformation of AgNPs in different media representatives to the life cycle in the environment and to identify their toxicity to Hepa1c1c7 cells in a long-term aging process. AgNPs coated with citrate, polyethylene glycol (PEG), polyvinylpyrrolidone (PVP), and branched polyethyleneimine (BPEI) were studied. Our results show that the exposure media had a significant impact on the transformation of AgNPs. Citrate-coated AgNPs showed significant aggregation in phosphate-buffered saline. The aging of AgNPs in optimal storage showed that the charge-stabilized particles (citrate) were more unstable, with significant aggregation and shape changes, than sterically stabilized particles (PEG AgNPs, PVP AgNPs). The BPEI AgNPs showed the highest dissolution of AgNPs, which induced significantly increased toxicity to Hepa1c1c7 cells. Overall, our findings showed that storage and media of AgNPs influenced the transformation of AgNPs and that the resulting changes in the AgNPs' physicochemical properties influenced their toxicity. Our study contributes to the understanding of AgNPs' transformations under realistic exposure scenarios and increasing the predictability of risk assessments.

8.
Environ Sci Technol ; 54(22): 14525-14534, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33119285

ABSTRACT

Organophosphate esters (OPEs) can exhibit various toxicities including endocrine disruption activity. Unfortunately, the low-dose endocrine-disrupting effects mediated by estrogen receptors (ERs) are commonly underestimated for OPEs and their metabolites. Here, structure-oriented research was performed to investigate the estrogenic/antiestrogenic effect of 13 OPEs (including three metabolites) and the potential mechanism. All of the OPEs exerted antiestrogenic activities in both E-screen and MVLN assays. OPEs with bulky substituents, such as phenyl rings (triphenyl phosphate (TPP), tricresyl phosphate (TCP), diphenylphosphoryl chloride, and diphenylphosphite) or relatively long alkyl chains (dibutylbutylphosphonate (DBBP)), exerted relatively strong ER antagonism potency at micromolar concentrations. The established quantitative structure-activity relationship indicated that the antiestrogenic activities of the OPEs mainly depended on the volume, leading eigenvalue, and hydrophobicity of the molecule. Molecular docking revealed that the three OPEs with the bulkiest substituents on the phosphate ester group (TPP, TCP, and DBBP) have a similar interaction mode to the classical ER antagonist 4-hydroxytamoxifen. The correlation between the antiestrogenic activity and the corresponding ER binding affinity was statistically significant, strongly suggesting that the OPEs possess the classical antagonism mechanism of interfering with the positioning of helix 12 in the ER.


Subject(s)
Esters , Flame Retardants , Biological Assay , China , Environmental Monitoring , Molecular Docking Simulation , Organophosphates/toxicity
9.
Sci Rep ; 10(1): 5188, 2020 03 23.
Article in English | MEDLINE | ID: mdl-32251330

ABSTRACT

Quaternized polyacrylic polymer has many applications in water treatment because of its ion exchange effects, but its further industrial applications are largely restricted because of its poor mechanical strength. In this work, a magnetic anion exchange resin with a polyacrylic matrix (MAP) was prepared by incorporation of Fe3O4 and subsequent modification with tetraethyl orthosilicate (TEOS) to improve the mechanical strength and adsorption performance. The incorporation of Fe3O4 significantly enhanced the mechanical strength of the polymer and improved the sphericity rate after ball milling of the polyacrylic resin from 80.1% to 97.2% as a result of hydrogen bonding between the -OH groups on Fe3O4 and the -NH- groups on the resin matrix. Further TEOS modification could effectively prevent Fe3O4 particles from dislodging from the resins. The adsorption performance was evaluated by using ibuprofen as a model compound. The adsorption kinetics showed that adsorption equilibrium was reached in 150 min. XPS analysis indicated that hydrogen bonding greatly contributed to the adsorption of ibuprofen onto the MAP. Adsorption isotherm analysis indicated that the adsorption was endothermic.

11.
Ecotoxicol Environ Saf ; 190: 109143, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31865203

ABSTRACT

Phthalate esters (PAEs) are one of the most frequently detected organic pollutants in soils. In this work, the adsorption behaviors of di-ethyl phthalate (DEP) and dibutyl phthalate (DBP) on soils, humins (HM) and Clay organo-mineral complexes (Clay-OM) from four regions in China, Changchun (CC), Cangzhou (CZ), Yinchuan (YC), and Changsha (CS) were studied. The surface and structural properties of these sorbents were characterized using Brunauer-Emmett-Teller specific surface area, Fourier transform infrared spectroscopy, X-ray diffraction spectroscopy, and 13C nuclear magnetic resonance methods. The results showed that the CC soil has the largest pore volume (PV) and specific surface area (SSA). PV, SSA, and aliphatic carbon content of the samples ranked as Clay-OM > HM > soil. Adsorption experiments indicated that the Clay-OM exhibited the strongest adsorption affinity for both DBP and DEP, followed by HM, and then the soil samples. Furthermore, DEP and DBP adsorption amounts on the samples declined as follows: CC > CS > CZ > YC. To illustrate the dominant mechanisms for PAEs adsorption onto soil, the soil organic carbon content normalized adsorption coefficient (LogKoc) was correlated with several possible parameters using multiple parameter linear regression and significance testing. The R2 values of the DBP and DEP in multi-regression equations were 0.825 and 0.741 respectively, and the significance test suggested that pore structure and specific surface area had crucial influences on the adsorption progress.


Subject(s)
Dibutyl Phthalate/chemistry , Phthalic Acids/chemistry , Soil Pollutants/chemistry , Adsorption , Carbon/analysis , China , Clay/chemistry , Esters , Humic Substances , Minerals/chemistry , Soil/chemistry
12.
Environ Sci Technol ; 52(7): 4199-4206, 2018 04 03.
Article in English | MEDLINE | ID: mdl-29537832

ABSTRACT

Metals can pose hazards to marine species and can adversely affect structures and functions of communities of marine species. However, little is known about how structural properties of metal atoms combined with current geographical and climatic conditions affect their toxic potencies. A mathematical model, based on quantitative structure-activity relationships and species sensitivity distributions (QSAR-SSD) was developed by use of acute toxicities of six metals (Cd, Cr, Cu, Hg, Ni, and Zn) to eight marine species and accessory environmental conditions. The model was then used to predict toxicities of 31 metals and metalloids and then to investigate relationships between acute water quality criteria (WQC) and environmental conditions in coastal marine environments. The model was also used to predict WQC in the coastal areas of different countries. Given global climate change, the QSAR-SSD model allows development of WQC for metals that will be protective of marine ecosystems under various conditions related to changes in global climate. This approach could be of enormous benefit in delivering an evidence-based approach to support regulatory decision making in management of metal and metalloids in marine waters.


Subject(s)
Metalloids , Water Pollutants, Chemical , Ecosystem , Environmental Monitoring , Metals , Water Quality
13.
Environ Pollut ; 232: 458-466, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28987569

ABSTRACT

Effect doses (EDs) of metals/metalloids, usually obtained from toxicological experiments are required for developing environmental quality criteria/standards for use in assessment of hazard or risks. However, because in vivo tests are time-consuming, costly and sometimes impossible to conduct, among more than 60 metals/metalloids, there are sufficient data for development of EDs for only approximately 25 metals/metalloids. Hence, it was deemed a challenge to derive EDs for additional metals by use of alternative methods. This study found significant relationships between EDs and physicochemical parameters for twenty-five metals/metalloids. Elements were divided into three classes and then three individual empirical models were developed based on the most relevant parameters for each class. These parameters included log-ßn, ΔE0 and Xm2r, respectively (R2 = 0.988, 0.839, 0.871, P < 0.01). Those models can satisfactorily predict EDs for another 25 metals/metalloids. Here, these alternative models for deriving thresholds of toxicity that could be used to perform preliminarily, screen-level health assessments for metals are presented.


Subject(s)
Environmental Exposure/statistics & numerical data , Environmental Pollutants/toxicity , Metalloids/toxicity , Metals/toxicity , Environmental Pollutants/chemistry , Environmental Pollutants/classification , Humans , Metalloids/chemistry , Metalloids/classification , Metals/chemistry , Metals/classification
14.
Mar Pollut Bull ; 124(2): 639-644, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-28249688

ABSTRACT

Marine pollution by metals has been a major challenge for ecological systems; however, water quality criteria (WQC) for metals in saltwater is still lacking. Especially from a regulatory perspective, chronic effects of metals on marine organisms should receive more attention. A quantitative ion characteristic-activity relationships-species sensitivity distributions (QICAR-SSD) model, based on chronic toxicities for eight marine organisms, was established to predict the criteria continuous concentrations (CCCs) of 21 metals. The results showed that the chronic toxicities of various metals had good relationships with their physicochemical properties. Predicted CCCs of six metals (Hg2+, Cu2+, Pb2+, Cd2+, Ni2+ and Zn2+) were in accordance with the values recommended by the U.S. EPA, with prediction errors being less than an order of magnitude. The QICAR-SSD approach provides an alternative tool to empirical methods and can be useful for deriving scientifically defensible WQC for metals for marine organisms and conducting ecological risk assessments.


Subject(s)
Ecotoxicology/methods , Metalloids/analysis , Metals/analysis , Models, Biological , Water Pollutants, Chemical/analysis , Animals , Aquatic Organisms/drug effects , Ecosystem , Metalloids/toxicity , Metals/toxicity , Risk Assessment/methods , Species Specificity , Toxicity Tests, Chronic , Water Pollutants, Chemical/toxicity , Water Quality
15.
Ecotoxicol Environ Saf ; 138: 215-222, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28061415

ABSTRACT

Chiral organophosphates (OPs) have been used widely around the world, very little is known about binding mechanisms with biological macromolecules. An in-depth understanding of the stereo selectivity of human AChE and discovering bioactive enantiomers of OPs can decrease health risks of these chiral chemicals. In the present study, a flexible molecular docking approach was conducted to investigate different binding modes of twelve phosphorus enantiomers. A pharmacophore model was then developed on basis of the bioactive conformations of these compounds. After virtual screening, twenty-four potential bioactive compounds were found, of which three compounds (Ethyl p-nitrophenyl phenylphosphonate (EPN), 1-naphthaleneacetic anhydride and N,4-dimethyl-N-phenyl-benzenesulfonamide) were tested by use of different in vitro assays. S-isomer of EPN was also found to exhibit greater inhibitory activity towards human AChE than the corresponding R-isomer. These findings affirm that stereochemistry plays a crucial role in virtual screening, and provide a new insight into designing safer organ phosphorus pesticides on human health.


Subject(s)
Acetylcholinesterase/chemistry , Cholinesterase Inhibitors/chemistry , Organophosphates/chemistry , Acetylcholinesterase/drug effects , Cholinesterase Inhibitors/pharmacology , Humans , Molecular Docking Simulation , Molecular Structure , Naphthaleneacetic Acids/chemistry , Naphthaleneacetic Acids/pharmacology , Organophosphates/pharmacology , Organophosphorus Compounds , Pesticides/chemistry , Stereoisomerism , Sulfonamides/chemistry , Sulfonamides/pharmacology
16.
Environ Sci Pollut Res Int ; 23(19): 19949-57, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27436379

ABSTRACT

The thermal evolution of sedimentary organic matter is a significant mechanism in continental oil and gas formation. This study presents a new method to estimate vertical thermal evolution trends in a lake sediment core. Twenty sediment samples from a 60-cm core recovered from Lake Bosten were heated to 600 °C at a rate of 10 °C min(-1) under a N2 atmosphere. The sediments were characterized by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA), and then, the samples were analyzed with total organic carbon (TOC) analyses, X-ray diffraction, and (137)Cs isotopic dating techniques. Two main anaerobic thermal degradation processes were observed in the thermograms. The pyrolysis results showed variations with sediment age, with labile carbon (237.2 ± 42.98 °C) manifesting different thermogram patterns than recalcitrant carbon (498.35 ± 30.09 °C). There was a significant linear correlation between sample weight loss and TOC (r = 0.972, p < 0.001), as well as between the DSC and TGA peaks (r = 0.963, p < 0.001). As a conclusion, the thermal stability of both labile organic carbon and recalcitrant organic carbon in lacustrine sediment core increased gradually with age. These results confirm that advanced thermal techniques (DSC and TGA) operated in inert gas are potential quantitative methods to characterize the anaerobic thermal behavior of sediment organic carbon.


Subject(s)
Carbon , Geologic Sediments , Lakes , Oil and Gas Fields/chemistry , Carbon/analysis , Carbon/chemistry , Chemistry Techniques, Analytical , Geologic Sediments/analysis , Geologic Sediments/chemistry , Hot Temperature , Lakes/analysis , Lakes/chemistry
17.
Nanotoxicology ; 10(9): 1207-14, 2016 11.
Article in English | MEDLINE | ID: mdl-27309010

ABSTRACT

BACKGROUND: The enormous physicochemical and structural diversity of metal oxide nanoparticles (MeONPs) poses significant challenges to the testing of their biological uptake, biodistribution, and effects that can be used to develop understanding of key nano-bio modes of action. This has generated considerable uncertainties in the assessment of their human health and environmental risks and has raised concerns about the adequacy of their regulation. In order to surpass the extremely resource intensive case-by-case testing, intelligent strategies combining testing methods and non-testing predictive modeling should be developed. METHODS: The quantitative structure-activity relationship (QSARs) in silico tools can be instrumental in understanding properties that affect the potencies of MeONPs and in predicting toxic responses and thresholds of effects. RESULTS: The present study proposes a predictive nano-QSAR model for predicting the cytotoxicity of MeONPs. The model was applied to test the relationships between 26 physicochemical properties of 51 MeONPs and their cytotoxic effects in Escherichia coli. The two parameters, enthalpy of formation of a gaseous cation (▵Hme+) and polarization force (Z/r), were elucidated to make a significant contribution for the toxic effect of these MeONPs. The study also proposed the mechanisms of toxic potency in E. coli through the model, which indicated that the MeONPs as well as their released metal ions could collectively induce DNA damage and cell apoptosis. SIGNIFICANCE: These findings may provide an alternative method for prioritizing current and future MeONPs for potential in vivo testing, virtual prescreening and for designing environmentally benign nanomaterials.


Subject(s)
Metal Nanoparticles/chemistry , Metal Nanoparticles/toxicity , Models, Theoretical , Nanoparticles/chemistry , Nanoparticles/toxicity , Computer Simulation , Escherichia coli/drug effects , Humans , Oxides , Predictive Value of Tests , Quantitative Structure-Activity Relationship , Tissue Distribution
18.
Sci Rep ; 6: 22877, 2016 Mar 08.
Article in English | MEDLINE | ID: mdl-26953147

ABSTRACT

Organic matter (OM) has been characterized using thermal analysis in O2 atmospheres, but it is not clear if OM can be characterized using slow thermal degradation in N2 atmospheres (STDN). This article presents a new method to estimate the behavior of OM in anaerobic environment. Seventeen different plants from Tai Lake (Ch: Taihu), China were heated to 600 °C at a rate of 10 °C min(-1) in a N2 atmosphere and characterized by use of differential scanning calorimetry (DSC) and thermal gravimetric analysis (TGA). DSC chromatograms were compared with 9 standard compounds. Seven peaks were observed in DSC chromatograms, 2 main peaks strongly correlated with biochemical indices, and one main peak was a transitional stage. Energy absorbed by a peak at approximately 200 °C and total organic carbon were well correlated, while energy absorbed at approximately 460 °C was negatively correlated with lignin content. Presence of peaks at approximately 350 and 420 °C varied among plant biomass sources, providing potential evidence for biomass identification. Methods of STDN reported here were rapid and accurate ways to quantitatively characterize OM, which may provide useful information for understanding anaerobic behaviors of natural organic matters.


Subject(s)
Calorimetry, Differential Scanning/methods , Carbon/analysis , Environmental Pollutants/analysis , Lakes/chemistry , Lignin/analysis , Plants/metabolism , Carbon/chemistry , Lignin/chemistry , Nitrogen/chemistry , Oxidation-Reduction
19.
Sci Rep ; 6: 22515, 2016 Mar 03.
Article in English | MEDLINE | ID: mdl-26936420

ABSTRACT

Transition metals are a group of elements widespread in aquatic environments that can be hazardous when concentrations exceeding threshold values. Due to insufficient data, criteria maximum concentrations (CMCs) of only seven transition metals for protecting aquatic life have been recommended by the USEPA. Hence, it is deemed necessary to develop empirical models for predicting the threshold values of water quality criteria (WQC) for other transition metals for which insufficient information on toxic potency is available. The present study established quantitative relationships between recommended CMCs and physicochemical parameters of seven transition metals, then used the developed relationships to predict CMCs for other transition metals. Seven of 26 physicochemical parameters examined were significantly correlated with the recommended CMCs. Based on this, five of the seven parameters were selected to construct a linear free energy model for predicting CMCs. The most relevant parameters were identified through principle component analysis, and the one with the best correlation with the recommended CMCs was a combination of covalent radius, ionic radius and electron density. Predicted values were largely consistent with their toxic potency values. The present study provides an alternative approach to develop screening threshold level for metals which have insufficient information to use traditional methods.

20.
Environ Sci Pollut Res Int ; 22(6): 4297-304, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25292300

ABSTRACT

Establishment of water quality criteria (WQC) is one procedure for protection of marine organisms and their ecosystems. This study, which integrated two separate approaches, quantitative ion character-activity relationships (QICARs) and species sensitivity distributions (SSDs), developed a novel QICAR-SSD model. The QICARs predict relative potencies of individual elements while SSDs integrate relative sensitivities among organisms. The QICAR-SSD approach was applied to derive saltwater WQC for 34 metals or metalloids. Relationships between physicochemical properties of metal ions and their corresponding potencies for acute toxicity to eight selected marine species were determined. The softness index (σp) exhibited the strongest correlation with the acute toxicity of metals (r (2) > 0.66, F > 5.88, P < 0.94 × 10(-2)). Predictive criteria maximum concentrations for the eight metals, derived by applying the SSD approach to values predicted by use of QICARs, were within the same order of magnitude as values recommended by the US EPA (2009). In general, the results support that the QICAR-SSD approach is a rapid method to estimate WQC for metals for which little or no information is available for marine organisms.


Subject(s)
Metals/chemistry , Water Pollutants, Chemical/chemistry , Water Quality/standards , Animals , Chordata , Fishes , Invertebrates/drug effects , Metalloids , Models, Theoretical , Silver Sulfadiazine
SELECTION OF CITATIONS
SEARCH DETAIL
...