Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Sci Rep ; 14(1): 15528, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38969744

ABSTRACT

This paper utilizes the theory of quantum diffusion to analyze the electron probability and spreading width of a wavepacket on each layer in a two-dimensional (2D) coupled system with edge disorder, aiming to clarify the effects of edge disorder on the stability of the electron periodic oscillations in 2D coupled systems. Using coupled 2D square lattices with edge disorder as an example, we show that, the electron probability and wavepacket spreading width exhibit periodic oscillations and damped oscillations, respectively, before and after the wavepacket reaches the boundary. Furthermore, these electron oscillations exhibit strong resistance against disorder perturbation with a longer decay time in the regime of large disorder, due to the combined influences of ordered and disordered site energies in the central and edge regions. Finally, we numerically verified the universality of the results through bilayer graphene, demonstrating that this anomalous quantum oscillatory behavior is independent of lattice geometry. Our findings are helpful in designing relevant quantum devices and understanding the influence of edge disorder on the stability of electron periodic oscillations in 2D coupled systems.

2.
Talanta ; 276: 126207, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38718650

ABSTRACT

Metal-Organic Framework (MOF) based nanozymes with clear structure are beneficial for exploration of structural-performance and exhibit broad prospects in improving activity. In this study, the prepared bimetallic Fe3Ni-MOF nanozyme was superior to single metal MOF in the peroxidase-like activity. Subsequently, a derivative nanozyme (Fe3Ni-MOF-Ar) was prepared by pyrolysis using Fe3Ni-MOF as the precursor in argon atomoshere with controlled temperature. The investigated of Fe3Ni-MOF-Ar revealed that the irregular macroporous state and the presence of heterovalent FeIII/FeII sites of Fe3Ni-MOF-Ar enable the retention, exposure, and electronic structure regulation of active sites, promoting the dual mechanism (the generation of •OH and electron transfer mechanism) and significantly increasing the peroxidase-like activity. Fe3Ni-MOF-Ar exhibited a strong affinity for substrate H2O2, which is higher than horseradish peroxidase. Ascorbic acid and cysteine are typical substances of antioxidants. Fe3Ni-MOF-Ar was used for sensitive colorimetric detection of ascorbic acid and cysteine, and the detection limit was as low as 150 and 60 nM. In addition, the smartphone devices was used to detection of antioxidant equivalent ascorbic acid, with a detection range of 0.5-120 µM. Fe3Ni-MOF-Ar nanozyme is feasible for sensitive detection of saliva total antioxidant capacity.


Subject(s)
Antioxidants , Ascorbic Acid , Metal-Organic Frameworks , Saliva , Smartphone , Saliva/chemistry , Metal-Organic Frameworks/chemistry , Humans , Antioxidants/analysis , Antioxidants/chemistry , Ascorbic Acid/analysis , Ascorbic Acid/chemistry , Catalytic Domain , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/analysis , Peroxidase/chemistry , Peroxidase/metabolism , Cysteine/analysis , Cysteine/chemistry , Colorimetry/methods , Nickel/chemistry , Limit of Detection
3.
Adv Mater ; 36(16): e2311659, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38175183

ABSTRACT

Enamel repair is crucial for restoring tooth function and halting dental caries. However, contemporary research often overlooks the retention of organic residues within the repair layer, which hinders the growth of dense crystals and compromises the properties of the repaired enamel. During the maturation of natural enamel, the organic matrix undergoes enzymatic processing to facilitate further crystal growth, resulting in a highly mineralized tissue. Inspired by this process, a biomimetic self-maturation mineralization system is developed, comprising ribonucleic acid-stabilized amorphous calcium phosphate (RNA-ACP) and ribonuclease (RNase). The RNA-ACP induces initial mineralization in the form of epitaxial crystal growth, while the RNase present in saliva automatically triggers a biomimetic self-maturation process. The mechanistic study further indicates that RNA degradation prompts conformational rearrangement of the RNA-ACP, effectively excluding the organic matter introduced earlier. This exclusion process promotes lateral crystal growth, resulting in the generation of denser enamel-like apatite crystals that are devoid of organic residues. This strategy of eliminating organic residues from enamel crystals enhances the mechanical and physiochemical properties of the repaired enamel. The present study introduces a conceptual biomimetic mineralization strategy for effective enamel repair in clinical practice and offers potential insights into the mechanisms of biomineral formation.


Subject(s)
Biomimetics , Calcium Phosphates , Dental Caries , Humans , RNA , Ribonucleases , Dental Enamel
4.
Chemosphere ; 351: 141199, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38237785

ABSTRACT

Glyphosate (N-(phosphonomethyl)glycine, GLY) ranks among the most extensively used and effective herbicides globally. However, excessive GLY utilization poses a substantial threat to the survival of honey bees (Apis cerana). Here we monitored the survival status of A. cerana treated with GLY, and conducted transcriptome sequencing of the bee gut and head to further explore potential GLY influences at the molecular level. We observed that the mortality rate of bees increased as GLY concentration escalated. Pivotal pathways emerged in response to the GLY treatment, with a substantial number of differentially expressed genes enriched in the longevity regulating pathway - multiple species. This strongly suggested that GLY may influence the physiological behavior of bees by impacting this particular pathway. Moreover, our analysis revealed a notable reduction in the enzymatic activities of CYP450 and AChE in both the bee head and intestines of when exposed to GLY. Conversely, the enzymatic activity of superoxide dismutase (SOD) in the head remained unaffected, whereas in the intestines, it exhibited a significant increase. Additionally, prophenol oxidase (PPO) and glutathione-S-transferases (GSTs) displayed contrasting trends in enzymatic activity in both organs. This study offers valuable insights into how GLY impacted the survival of A. cerana.


Subject(s)
Glyphosate , Herbicides , Bees , Animals , Longevity , Glycine/toxicity , Herbicides/toxicity
5.
Nat Commun ; 14(1): 5766, 2023 Sep 18.
Article in English | MEDLINE | ID: mdl-37723156

ABSTRACT

Localized interlayer excitons (LIXs) in two-dimensional moiré superlattices exhibit sharp and dense emission peaks, making them promising as highly tunable single-photon sources. However, the fundamental nature of these LIXs is still elusive. Here, we show the donor-acceptor pair (DAP) mechanism as one of the origins of these excitonic peaks. Numerical simulation results of the DAP model agree with the experimental photoluminescence spectra of LIX in the moiré MoSe2/WSe2 heterobilayer. In particular, we find that the emission energy-lifetime correlation and the nonmonotonic power dependence of the lifetime agree well with the DAP IX model. Our results provide insight into the physical mechanism of LIX formation in moiré heterostructures and pave new directions for engineering interlayer exciton properties in moiré superlattices.

6.
BMC Gastroenterol ; 23(1): 226, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37393226

ABSTRACT

Esophageal stricture is a common complication after endoscopic submucosal dissection (ESD) for superficial esophageal cancer and precancerous lesions, we intend to investigate the independent risk factors of esophageal stricture after ESD by adding the data of included living habits, established a nomogram model to predict the risk of esophageal stricture, and verified it by external data. The clinical data and living habits of patients with early esophageal cancer and precancerous lesions who underwent ESD in the Affiliated Hospital of North Sichuan Medical College and Langzhong People's Hospital from March 2017 to August 2021 were retrospectively collected. The data collected from the two hospitals were used as the development group (n = 256) and the validation group (n = 105), respectively. Univariate and multivariate logistic regression analyses were used to determine independent risk factors for esophageal stricture after ESD and establish a nomogram model for the development group. The prediction performance of the nomogram model is internally and externally verified by calculating C-Index and plotting the receiver operating characteristic curve (ROC) and calibration curve, respectively. The results showed that Age, drinking water temperature, neutrophil-lymphocyte ratio, the extent of esophageal mucosal defect, longitudinal diameter of resected mucosa, and depth of tissue invasion (P < 0.05) were independent risk factors for esophageal stricture after ESD. The C-Index of the development group and validation group was 0.925 and 0.861, respectively. The ROC curve and area under the curve (AUC) of the two groups suggested that the discrimination and prediction performance of the model were good. The two groups of calibration curves are consistent and almost overlap with the ideal calibration curve, indicating that the predicted results of this model are in good agreement with the actual observed results. In conclusion, this nomogram model has a high accuracy for predicting the risk of esophageal stricture after ESD, providing a theoretical basis for reducing or avoiding esophageal stricture and guiding clinical practice.


Subject(s)
Endoscopic Mucosal Resection , Esophageal Neoplasms , Esophageal Stenosis , Precancerous Conditions , Humans , Endoscopic Mucosal Resection/adverse effects , Case-Control Studies , Esophageal Stenosis/etiology , Nomograms , Retrospective Studies , Esophageal Neoplasms/surgery , Risk Factors
7.
Nature ; 619(7969): 293-299, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37286604

ABSTRACT

Although organic-inorganic hybrid materials have played indispensable roles as mechanical1-4, optical5,6, electronic7,8 and biomedical materials9-11, isolated organic-inorganic hybrid molecules (at present limited to covalent compounds12,13) are seldom used to prepare hybrid materials, owing to the distinct behaviours of organic covalent bonds14 and inorganic ionic bonds15 in molecular construction. Here we integrate typical covalent and ionic bonds within one molecule to create an organic-inorganic hybrid molecule, which can be used for bottom-up syntheses of hybrid materials. A combination of the organic covalent thioctic acid (TA) and the inorganic ionic calcium carbonate oligomer (CCO) through an acid-base reaction provides a TA-CCO hybrid molecule with the representative molecular formula TA2Ca(CaCO3)2. Its dual reactivity involving copolymerization of the organic TA segment and inorganic CCO segment generates the respective covalent and ionic networks. The two networks are interconnected through TA-CCO complexes to form a covalent-ionic bicontinuous structure within the resulting hybrid material, poly(TA-CCO), which unifies paradoxical mechanical properties. The reversible binding of Ca2+-CO32- bonds in the ionic network and S-S bonds in the covalent network ensures material reprocessability with plastic-like mouldability while preserving thermal stability. The coexistence of ceramic-like, rubber-like and plastic-like behaviours within poly(TA-CCO) goes beyond current classifications of materials to generate an 'elastic ceramic plastic'. The bottom-up creation of organic-inorganic hybrid molecules provides a feasible pathway for the molecular engineering of hybrid materials, thereby supplementing the classical methodology used for the manufacture of organic-inorganic hybrid materials.

8.
Carbohydr Polym ; 310: 120738, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36925258

ABSTRACT

Chondroitin sulfate (CS) is an important extracellular matrix component of mineralized tissues. It participates in biomineralization, osteoblast differentiation and promotes bone tissue repair in vitro. However, the mechanism in which CS functions is unclear. Accordingly, an in-depth investigation of how CS participates in mineralization was conducted in the present study. Chondroitin sulfate was found to directly induce intrafibrillar mineralization of the collagen matrix. The mineralization outcome was dependent on whether CS remained free in the extracellular matrix or bound to core proteins; mineralization only occurred when CS existed in a free state. The efficacy of mineralization appeared to increase with ascending CS concentration. This discovery spurred the authors to identify the cause of heterotopic ossification in the Achilles tendon. Chondroitin sulfate appeared to be a therapeutic target for the management of diseases associated with heterotopic calcification. A broader perspective was presented on the applications of CS in tissue engineering.


Subject(s)
Biomineralization , Chondroitin Sulfates , Chondroitin Sulfates/pharmacology , Bone and Bones/metabolism , Collagen/metabolism , Extracellular Matrix/metabolism
9.
Mikrochim Acta ; 190(3): 81, 2023 02 06.
Article in English | MEDLINE | ID: mdl-36746829

ABSTRACT

An aminated Fe-Ni bimetallic metal-organic framework (Fe3Ni-MOF-NH2) with both peroxidase-like activity and fluorescence properties was developed. Fe3Ni-MOF-NH2 possessed the enhanced peroxidase-like activity through the enhanced electron transfer process and hydroxyl radical (·OH) generation. It was found that the amino group endowed the material with fluorescent property and the metal site Ni in Fe3Ni-MOF-NH2 could also enhance the fluorescence emission intensity (Ex = 345 nm, Em = 452 nm). Based on the dual excellent performance of Fe3Ni-MOF-NH2, a novel sensitive fluorescence detection strategy for H2O2 and glucose was designed and achieved. First, Fe3Ni-MOF-NH2 converted H2O2 to ·OH by exerting peroxidase-like activity, and ·OH converts catechol to o-benzoquinone. Then, the amino group in Fe3Ni-MOF-NH2 connected to o-benzoquinone, which resulted in its fluorescence quenching. The detection limit of H2O2 was as low as 5 nM. Combined with glucose oxidase which can oxidize glucose and produce H2O2 the glucose could be indirectly determined with a detection limit of 40 nM. The method was applied to the detection of low-level glucose in human urine samples with good recoveries and reproducibilities.


Subject(s)
Biosensing Techniques , Glucose , Humans , Hydrogen Peroxide , Biosensing Techniques/methods , Coloring Agents , Peroxidases
10.
Biomaterials ; 296: 122066, 2023 05.
Article in English | MEDLINE | ID: mdl-36842238

ABSTRACT

Osteoporosis is caused by the disruption in homeostasis between bone formation and bone resorption. Conventional management of osteoporosis involves systematic drug administration and hormonal therapy. These treatment strategies have limited curative efficacy and multiple adverse effects. Biomaterials-based therapeutic strategies have recently emerged as promising alternatives for the treatment of osteoporosis. The present review summarizes the current status of biomaterials designed for managing osteoporosis. The advantages of biomaterials-based strategies over conventional systematic drug treatment are presented. Different anti-osteoporotic delivery systems are concisely addressed. These materials include injectable hydrogels and nanoparticles, as well as anti-osteoporotic bone tissue engineering materials. Fabrication techniques such as 3D printing, electrostatic spinning and artificial intelligence are appraised in the context of how the use of these adjunctive techniques may improve treatment efficacy. The limitations of existing biomaterials are critically analyzed, together with deliberation of the future directions in biomaterials-based therapies. The latter include discussion on the use of combination strategies to enhance therapeutic efficacy in the osteoporosis niche.


Subject(s)
Artificial Intelligence , Osteoporosis , Humans , Osteoporosis/drug therapy , Biocompatible Materials/therapeutic use , Tissue Engineering/methods , Bone and Bones , Hydrogels/therapeutic use , Printing, Three-Dimensional
11.
Chemosphere ; 318: 137825, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36681194

ABSTRACT

Membrane technology has been widely used to treat wastewater from a variety of industries, but it also results in a large amount of concentrated wastewater containing organic pollutants after membrane treatment, which is challenging to decompose. Here in this work, a series of perovskite SrFexZr1-xO3-δ catalysts were prepared via a modified co-precipitation method and evaluated for catalytic ozone oxidative degradation of m-cresol. An artificial neural intelligence networks (ANN) model was employed to train the experimental data to optimize the preparation parameters of catalysts, with SrFe0.13Zr0.87O3-δ being the optimal catalysts. The resultant catalysts before and after reduction were then thoroughly characterized and tested for m-cresol degradation. It was found that the co-doping of Fe and Zr at the B-site and the improvement of oxygen vacancies and oxygen active species by reduction dramatically increased TOC removal rates up to 5 times compared with ozone alone, with the conversion rate of m-cresol reaching 100%. We also proposed a possible mechanism for m-cresol degradation via investigating the intermediates using GC-MS, and confirmed the good versatility of the reduced SrFe0.13Zr0.87O3-δ catalyst to remove other common organic pollutants in concentrated wastewater. This work demonstrates new prospects for the use of perovskite materials in wastewater treatment.


Subject(s)
Environmental Pollutants , Ozone , Water Pollutants, Chemical , Water , Wastewater , Water Pollutants, Chemical/analysis , Artificial Intelligence , Catalysis
12.
Nano Lett ; 22(16): 6553-6559, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-35960708

ABSTRACT

Hexagonal boron nitride is not only a promising functional material for the development of two-dimensional optoelectronic devices but also a good candidate for quantum sensing thanks to the presence of quantum emitters in the form of atom-like defects. Their exploitation in quantum technologies necessitates understanding their coherence properties as well as their sensitivity to external stimuli. In this work, we probe the strain configuration of boron vacancy centers (VB-) created by ion implantation in h-BN flakes thanks to wide-field spatially resolved optically detected magnetic resonance and submicro Raman spectroscopy. Our experiments demonstrate the ability of VB- for quantum sensing of strain and, given the omnipresence of h-BN in 2D-based devices, open the door for in situ imaging of strain under working conditions.

13.
BMC Complement Med Ther ; 22(1): 189, 2022 Jul 16.
Article in English | MEDLINE | ID: mdl-35842665

ABSTRACT

BACKGROUND: hyperlipidemia acute pancreatitis (HTG-AP) is a major hidden danger affecting human health, however, whether there is a protective effect of resveratrol on HTG-AP is unclear. Therefore our study was aimed to investigate the preventive effect and the underlying mechanism of resveratrol in the HTG-AP mice model. METHODS: This research was divided into two parts. In the first part, mice were adaptively fed with normal chow or HFD for 6 weeks. From the second week, resveratrol-treated mice were in intragastric administration with resveratrol (45 mg/kg/d) for 4 weeks. In the second part, the procedures were the same as the first part. After the last intragastric administration with resveratrol, all mice were intraperitoneal injections of cerulean. RESULTS: We found resveratrol effectively inhibited pancreatic pathological injury in the HFD, AP, and HTG-AP mice. Resveratrol reduced the LPS, IL-6, TNF-α, and MCP-1 expressions in the HFD mice. Resveratrol also reduced TNF-α, MDA, and MCP-1 expressions and increased SOD and T-AOC expressions in the AP and HTG-AP mice. Furthermore, resveratrol suppressed the NF-κB pro-inflammatory signaling pathway in pancreatic tissues in the AP and HTG-AP mice. Moreover, resveratrol improved the gut microbiota in the HFD mice. CONCLUSION: The resveratrol pre-treatment could attenuate pancreas injury, inflammation, and oxidative stress in the HTG-AP mice, via restraining the NF-κB signaling pathway and regulating gut microbiota. Therefore, Our study proved that the resveratrol pre-treatment had a preventive effect on HTG-AP.


Subject(s)
Gastrointestinal Microbiome , Pancreatitis , Acute Disease , Animals , Ceruletide/adverse effects , Diet, High-Fat/adverse effects , Humans , Mice , NF-kappa B/metabolism , Pancreatitis/chemically induced , Pancreatitis/drug therapy , Pancreatitis/metabolism , Resveratrol/adverse effects , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
14.
Phys Rev Lett ; 128(21): 216402, 2022 May 27.
Article in English | MEDLINE | ID: mdl-35687466

ABSTRACT

Negatively charged boron vacancy (V_{B}^{-}) centers in hexagonal boron nitride (h-BN) are promising spin defects in a van der Waals crystal. Understanding the spin properties of the excited state (ES) is critical for realizing dynamic nuclear polarization. Here, we report zero-field splitting in the ES of D_{ES}=2160 MHz and its associated optically detected magnetic resonance (ODMR) contrast of 12% at cryogenic temperature. In contrast to nitrogen vacancy (NV^{-}) centers in diamond, the ODMR contrast of V_{B}^{-} centers is more prominent at cryotemperature than at room temperature. The ES has a g factor similar to the ground state. The ES photodynamics is further elucidated by measuring the level anticrossing of the V_{B}^{-} defects under varying external magnetic fields. Our results provide important information for utilizing the spin defects of h-BN in quantum technology.

15.
Mikrochim Acta ; 189(6): 219, 2022 05 16.
Article in English | MEDLINE | ID: mdl-35578119

ABSTRACT

A bifunctional Ni-MOF nanosheet was synthesized and developed for label-free fluorescent detection of H2O2 and glucose. The Ni-MOF exhibited intrinsic peroxidase-like activity and its catalytic activity was demonstrated to be originated from the hydroxyl radicals (•OH) produced in catalytic process. Since the generated •OH enabled terephthalic acid, the non-fluorescent organic ligand of Ni-MOF, to form a strongly fluorescent 2-hydroxy terephthalic acid, the Ni-MOF nanozyme was endowed with dual-function properties of mimicking peroxidase and emitting fluorescence. Based on this bifunctional Ni-MOF nanozyme, the proposed label-free fluorescence sensing strategy was applied to detecting H2O2 and glucose with wide linear ranges of 0.1-20 mM and 8-30 µM, and low detection limits of 4.0 × 10-5 M and 4.0 × 10-6 M, respectively. Furthermore, the bifunctional Ni-MOF-based label-free sensing platform was successfully used for the glucose detection in human serum samples, showing good reproducibility and high accuracy. This strategy provides a green and sensitive method for the determination of small biomolecules in practical applications by the combination of enzyme cascade reaction.


Subject(s)
Hydrogen Peroxide , Metal-Organic Frameworks , Coloring Agents , Glucose , Humans , Ligands , Peroxidases , Reproducibility of Results
16.
ACS Appl Mater Interfaces ; 14(12): 14103-14119, 2022 Mar 30.
Article in English | MEDLINE | ID: mdl-35306805

ABSTRACT

The periosteum orchestrates the microenvironment of bone regeneration, including facilitating local neuro-vascularization and regulating immune responses. To mimic the role of natural periosteum for bone repair enhancement, we adopted the principle of biomimetic mineralization to delicately inlay amorphous cerium oxide within eggshell membranes (ESMs) for the first time. Cerium from cerium oxide possesses unique ability to switch its oxidation state from cerium III to cerium IV and vice versa, which provides itself promising potential for biomedical applications. ESMs are mineralized with cerium(III, IV) oxide and examined for their biocompatibility. Apart from serving as physical barriers, periosteum-like cerium(III, IV) oxide-mineralized ESMs are biocompatible and can actively regulate immune responses and facilitate local neuro-vascularization along with early-stage bone regeneration in a murine cranial defect model. During the healing process, cerium-inlayed biomimetic periosteum can boost early osteoclastic differentiation of macrophage lineage cells, which may be the dominant mediator of the local repair microenvironment. The present work provides novel insights into expanding the definition and function of a biomimetic periosteum to boost early-stage bone repair and optimize long-term repair with robust neuro-vascularization. This new treatment strategy which employs multifunctional bone-and-periosteum-mimicking systems creates a highly concerted microenvironment to expedite bone regeneration.


Subject(s)
Cerium , Periosteum , Animals , Biomimetics , Bone Regeneration , Egg Shell , Mice , Osteogenesis , Oxides , Periosteum/physiology , Tissue Engineering
17.
Medicine (Baltimore) ; 101(5): e28741, 2022 Feb 04.
Article in English | MEDLINE | ID: mdl-35119025

ABSTRACT

ABSTRACT: Currently, endoscopic submucosal dissection (ESD) has gradually become the diagnosis and treatment of choice for initial esophageal cancer. However, the formation of esophageal stricture after ESD is one of its important complications. In this paper, we intend to identify the risk factors of esophageal stricture to develop a nomogram model to predict the risk of esophageal stricture and validate this model.A total, 159 patients were included in this study, including 21 patients with esophageal stenosis. Multivariate analysis showed that age greater than 60 years, high neutrophil-to-lymphocyte ratio, the extent of esophageal mucosal defect greater than 1/2, and postoperative pathological type of early esophageal squamous cell carcinoma were independent risk factors for predicting esophageal stricture. We constructed a nomogram model to predict esophageal stenosis by these 4 independent predictors.The prediction performance of the model was verified by the area under the receiver operating characteristic curve, the area under the receiver operating characteristic curve of the model was 0.889, and the sensitivity and specificity were 80.00% and 91.28%, respectively, indicating that the prediction performance of the model was good; The calibration curve constructed by internal cross-validation suggested that the predicted results of the nomogram agreed well with the actual observed values.The nomogram model has a high accuracy for predicting esophageal stricture after esophageal ESD and is extremely important to reduce or avoid the occurrence of esophageal stricture. But it needs more external and prospective validation.


Subject(s)
Endoscopic Mucosal Resection , Esophageal Neoplasms , Esophageal Squamous Cell Carcinoma , Esophageal Stenosis , Endoscopic Mucosal Resection/adverse effects , Esophageal Neoplasms/surgery , Esophageal Squamous Cell Carcinoma/surgery , Esophageal Stenosis/diagnosis , Esophageal Stenosis/etiology , Humans , Middle Aged , Nomograms , Retrospective Studies
18.
Materials (Basel) ; 14(22)2021 Nov 11.
Article in English | MEDLINE | ID: mdl-34832216

ABSTRACT

Presently, in the context of the novel coronavirus pneumonia epidemic, several antibiotics are overused in hospitals, causing heavy pressure on the hospital's wastewater treatment process. Therefore, developing stable, safe, and efficient hospital wastewater treatment equipment is crucial. Herein, a bench-scale electrooxidation equipment for hospital wastewater was used to evaluate the removal effect of the main antibiotic levofloxacin (LVX) in hospital wastewater using response surface methodology (RSM). During the degradation process, the influence of the following five factors on total organic carbon (TOC) removal was discussed and the best reaction condition was obtained: current density, initial pH, flow rate, chloride ion concentration, and reaction time of 39.6 A/m2, 6.5, 50 mL/min, 4‱, and 120 min, respectively. The TOC removal could reach 41% after a reaction time of 120 min, which was consistent with the result predicted by the response surface (40.48%). Moreover, the morphology and properties of the electrode were analyzed. The degradation pathway of LVX was analyzed using high-performance liquid chromatography-mass spectrometry (LC-MS). Subsequently, the bench-scale electrooxidation equipment was changed into onboard-scale electrooxidation equipment, and the onboard-scale equipment was promoted to several hospitals in Dalian.

19.
J Cancer Res Clin Oncol ; 147(6): 1569-1585, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33864521

ABSTRACT

BACKGROUND: The Hippo pathway is widely considered to inhibit cell growth and play an important role in regulating the size of organs. However, recent studies have shown that abnormal regulation of the Hippo pathway can also affect tumor invasion and metastasis. Therefore, finding out how the Hippo pathway promotes tumor development by regulating the expression of target genes provides new ideas for future research on targeted drugs that inhibit tumor progression. METHODS: PubMed, Embase, Web of Science, and the Cochrane Library were systematically searched. RESULTS: The search strategy identified 1892 hits and 196 publications were finally included in this review. As the core molecule of the Hippo pathway, YAP/TAZ are usually highly expressed in tumors that undergo invasion and migration and are accompanied by abnormally strong nuclear metastasis. Through its interaction with nuclear transcription factors TEADs, it directly or indirectly regulates and the expressions of target genes related to tumor metastasis and invasion. These target genes can induce the formation of invasive pseudopodia in tumor cells, reduce intercellular adhesion, degrade extracellular matrix (ECM), and cause epithelial-mesenchymal transition (EMT), or indirectly promote through other signaling pathways, such as mitogen-activated protein kinases (MAPK), TGF/Smad, etc, which facilitate the invasion and metastasis of tumors. CONCLUSION: This article mainly introduces the research progress of YAP/TAZ which are the core molecules of the Hippo pathway regulating related target genes to promote tumor invasion and metastasis. Focus on the target genes that affect tumor invasion and metastasis, providing the possibility for the selection of clinical drug treatment targets, to provide some help for a more in-depth study of tumor invasion and migration mechanism and the development of clinical drugs.


Subject(s)
Neoplasm Invasiveness/genetics , Neoplasm Metastasis/genetics , Protein Serine-Threonine Kinases/physiology , Animals , Cell Movement/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Hippo Signaling Pathway , Humans , Signal Transduction/genetics , Transcription Factors/genetics
20.
Nanomaterials (Basel) ; 11(1)2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33477573

ABSTRACT

Bulk inorganic materials play important roles in human society, and their construction is commonly achieved by the coalescence of inorganic nano- or micro-sized particles. Understanding the coalescence process promotes the elimination of particle interfaces, leading to continuous bulk phases with improved functions. In this review, we mainly focus on the coalescence of ceramic and metal materials for bulk construction. The basic knowledge of coalescent mechanism on inorganic materials is briefly introduced. Then, the properties of the inorganic precursors, which determine the coalescent behaviors of inorganic phases, are discussed from the views of particle interface, size, crystallinity, and orientation. The relationships between fundamental discoveries and industrial applications are emphasized. Based upon the understandings, the applications of inorganic bulk materials produced by the coalescence of their particle precursors are further presented. In conclusion, the challenges of particle coalescence for bulk material construction are presented, and the connection between recent fundamental findings and industrial applications is highlighted, aiming to provide an insightful outlook for the future development of functional inorganic materials.

SELECTION OF CITATIONS
SEARCH DETAIL
...