Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Integr Comp Biol ; 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702856

ABSTRACT

As the world becomes warmer and precipitation patterns less predictable, organisms will experience greater heat and water stress. It is crucial to understand the factors that predict variation in thermal and hydric physiology among species. This study focuses on investigating the relationships between thermal and hydric diversity, and their environmental predictors, in a clade of Hispaniolan anole lizards, which are part of a broader Caribbean adaptive radiation. This clade, the 'cybotoid' anoles, occupies a wide range of thermal habitats (from sea level to several kilometers above it) and hydric habitats (such as xeric scrub, broadleaf forest, and pine forest), setting up the possibility for ecophysiological specialization among species. Among the thermal traits only cold tolerance is correlated with environmental temperature, and none of our climate variables were correlated with hydric physiology. Nevertheless, we found a negative relationship between heat tolerance (critical thermal maximum) and evaporative water loss at higher temperatures such that more heat tolerant lizards are also more desiccation tolerant at higher temperatures. This finding hints at shared thermal and hydric specialization at higher temperatures, underscoring the importance of considering the interactive effects of temperature and water balance in ecophysiological studies. While ecophysiological differentiation is a core feature of the anole adaptive radiation, our results suggest that close relatives in this lineage do not diverge in hydric physiology and only diverge partially in thermal physiology.

2.
Integr Comp Biol ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38802122

ABSTRACT

Terrestrial environments pose many challenges to organisms, but perhaps one of the greatest is the need to breathe while maintaining water balance. Breathing air requires thin, moist respiratory surfaces, and thus the conditions necessary for gas exchange are also responsible for high rates of water loss that lead to desiccation. Across the diversity of terrestrial life, water loss acts as a universal cost of gas exchange and thus imposes limits on respiration. Amphibians are known for being vulnerable to rapid desiccation, in part because they rely on thin, permeable skin for cutaneous respiration. Yet we have a limited understanding of the relationship between water loss and gas exchange within and among amphibian species. In this study, we evaluated the hydric costs of respiration in amphibians using the transpiration ratio, which is defined as the ratio of water loss (mol H2O d-1) to gas uptake (mol O2 d-1). A high ratio suggests greater hydric costs relative to the amount of gas uptake. We compared the transpiration ratio of amphibians with that of other terrestrial organisms to determine if amphibians had greater hydric costs of gas uptake relative to plants, insects, birds, and mammals. We also evaluated the effects of temperature, humidity, and body mass on the transpiration ratio both within and among amphibian species. We found that hydric costs of respiration in amphibians were two to four orders of magnitude higher than the hydric costs of plants, insects, birds, and mammals. We also discovered that larger amphibians had lower hydric costs than smaller amphibians, at both the species- and individual-level. Amphibians also reduced the hydric costs of respiration at warm temperatures, potentially reflecting adaptive strategies to avoid dehydration while also meeting the demands of higher metabolic rates. Our results suggest that cutaneous respiration is an inefficient mode of respiration that produces the highest hydric costs of respiration yet to be measured in terrestrial plants and animals. Yet, amphibians largely avoid these costs by selecting aquatic or moist environments, which may facilitate more independent evolution of water loss and gas exchange.

3.
J Exp Biol ; 226(22)2023 11 15.
Article in English | MEDLINE | ID: mdl-37955347

ABSTRACT

Mechanistic niche models are computational tools developed using biophysical principles to address grand challenges in ecology and evolution, such as the mechanisms that shape the fundamental niche and the adaptive significance of traits. Here, we review the empirical basis of mechanistic niche models in biophysical ecology, which are used to answer a broad array of questions in ecology, evolution and global change biology. We describe the experiments and observations that are frequently used to parameterize these models and how these empirical data are then incorporated into mechanistic niche models to predict performance, growth, survival and reproduction. We focus on the physiological, behavioral and morphological traits that are frequently measured and then integrated into these models. We also review the empirical approaches used to incorporate evolutionary processes, phenotypic plasticity and biotic interactions. We discuss the importance of validation experiments and observations in verifying underlying assumptions and complex processes. Despite the reliance of mechanistic niche models on biophysical theory, empirical data have and will continue to play an essential role in their development and implementation.


Subject(s)
Ecology , Models, Biological , Phenotype , Ecosystem , Biological Evolution
4.
Evolution ; 77(11): 2365-2377, 2023 11 02.
Article in English | MEDLINE | ID: mdl-37624672

ABSTRACT

Geographic access to isolated ecosystems is an important catalyst of adaptive radiation. Cichlid fishes repeatedly colonized rift, crater, and volcanic lakes from surrounding rivers. We test the "lake effect" on the phenotypic rate and state across 253 cichlid species. The rate of evolution was consistently higher (~10-fold) in lakes, and consistent across different dimensions of the phenotype. Rate shifts tended to occur coincident with or immediately following river-to-lake transitions, generally resulting in 2- to 5-fold faster rates than in the founding riverine lineage. By contrast, river- and lake-dwelling cichlids exhibit considerable overlap in phenotypes, generally with less disparity in lakes, but often different evolutionary optima. Taken together, these results suggest that lake radiations rapidly expand into niches largely already represented by ancestral riverine lineages, albeit in different frequencies. Lakes may provide ecological opportunity via ecological release (e.g., from predators/competitors) but need not be coupled with access to novel ecological niches.


Subject(s)
Cichlids , Lakes , Animals , Phylogeny , Rivers , Ecosystem , Cichlids/genetics , Phenotype
5.
Nat Commun ; 14(1): 773, 2023 02 11.
Article in English | MEDLINE | ID: mdl-36774385

ABSTRACT

Although the tropics harbor the greatest species richness globally, recent work has demonstrated that, for many taxa, speciation rates are faster at higher latitudes. Here, we explore lability in oceanic depth as a potential mechanism for this pattern in the most biodiverse vertebrates - fishes. We demonstrate that clades with the highest speciation rates also diversify more rapidly along the depth gradient, drawing a fundamental link between evolutionary and ecological processes on a global scale. Crucially, these same clades also inhabit higher latitudes, creating a prevailing latitudinal gradient of deep-sea invasions concentrated in poleward regions. We interpret these findings in the light of classic ecological theory, unifying the latitudinal variation of oceanic features and the physiological tolerances of the species living there. This work advances the understanding of how niche lability sculpts global patterns of species distributions and underscores the vulnerability of polar ecosystems to changing environmental conditions.


Subject(s)
Ecosystem , Fishes , Animals , Biological Evolution , Biodiversity , Oceans and Seas
6.
J Exp Zool A Ecol Integr Physiol ; 339(3): 269-283, 2023 04.
Article in English | MEDLINE | ID: mdl-36567430

ABSTRACT

In snakes, the skin serves for protection, camouflage, visual signaling, locomotion, and its ability to stretch facilitates large prey ingestion. The flying snakes of the genus Chrysopelea are capable of jumping and gliding through the air, requiring additional functional demands: its skin must accommodate stretch in multiple directions during gliding and, perhaps more importantly, during high-speed, direct-impact landing. Is the skin of flying snakes specialized for gliding? Here, we characterized the material properties of the skin of Chrysopelea ornata and compared them with two nongliding species of colubrid snakes, Thamnophis sirtalis and Pantherophis guttatus, as well as with previously published values. The skin was examined using uniaxial tensile testing to measure stresses, and digital image correlation methods to determine strains, yielding metrics of strength, elastic modulus, strain energy, and extensibility. To test for loading orientation effects, specimens were tested from three orientations relative to the snake's long axis: lateral, circumferential, and ventral. Specimens were taken from two regions of the body, pre- and pos-tpyloric, to test for regional effects related to the ingestion of large prey. In comparison with T. sirtalis and P. guttatus, C. ornata exhibited higher post-pyloric and lower pre-pyloric extensibility in circumferential specimens. However, overall there were few differences in skin material properties of C. ornata compared to other species, both within and across studies, suggesting that the skin of flying snakes is not specialized for gliding locomotion. Surprisingly, circumferential specimens demonstrated lower strength and extensibility in pre-pyloric skin, suggesting less regional specialization related to large prey.


Subject(s)
Colubridae , Animals , Colubridae/physiology , Flight, Animal , Locomotion
7.
Syst Biol ; 72(1): 150-160, 2023 05 19.
Article in English | MEDLINE | ID: mdl-35961046

ABSTRACT

Trade-offs are thought to bias evolution and are core features of many anatomical systems. Therefore, trade-offs may have far-reaching macroevolutionary consequences, including patterns of morphological, functional, and ecological diversity. Jaws, like many complex anatomical systems, are comprised of elements involved in biomechanical trade-offs. We test the impact of a core mechanical trade-off, the transmission of velocity versus force (i.e., mechanical advantage), on rates of jaw evolution in Neotropical cichlids. Across 130 species representing a wide array of feeding ecologies, we find that the velocity-force trade-off impacts the evolution of the surrounding jaw system. Specifically, rates of jaw evolution are faster at functional extremes than in more functionally intermediate or unspecialized jaws. Yet, surprisingly, the effect on jaw evolution is uneven across the extremes of the velocity-force continuum. Rates of jaw evolution are 4- to 10-fold faster in velocity-modified jaws, whereas force-modified jaws are 7- to 18-fold faster, compared to unspecialized jaws, depending on the extent of specialization. Further, we find that a more extreme mechanical trade-off resulted in faster rates of jaw evolution. The velocity-force trade-off reflects a gradient from specialization on capture-intensive (e.g., evasive or buried) to processing-intensive prey (e.g., attached or shelled), respectively. The velocity extreme of the trade-off is characterized by large magnitudes of trait change leading to functionally divergent specialists and ecological stasis. By contrast, the force extreme of the trade-off is characterized by enhanced ecological lability made possible by phenotypes more readily co-opted for different feeding ecologies. This asymmetry of macroevolutionary outcomes along each extreme is likely the result of an enhanced utility of the pharyngeal jaw system as force-modified oral jaws are adapted for prey that requires intensive processing (e.g., algae, detritus, and mollusks). The velocity-force trade-off, a fundamental feature of many anatomical systems, promotes rapid phenotypic evolution of the surrounding jaw system in a canonical continental adaptive radiation. Considering that the velocity-force trade-off is an inherent feature of all jaw systems that involve a lower element that rotates at a joint, spanning the vast majority of vertebrates, our results may be widely applicable across the tree of life. [Adaptive radiation; constraint; decoupling; jaws; macroevolution; specialization.].


Subject(s)
Cichlids , Jaw , Animals , Phylogeny , Biomechanical Phenomena , Jaw/anatomy & histology , Cichlids/genetics , Phenotype , Biological Evolution
8.
Integr Org Biol ; 4(1): obac020, 2022.
Article in English | MEDLINE | ID: mdl-35975191

ABSTRACT

Many organismal functions are temperature-dependent due to the contractile properties of muscle. Spring-based mechanisms offer a thermally robust alternative to temperature-sensitive muscular movements and may correspondingly expand a species' climatic niche by partially decoupling the relationship between temperature and performance. Using the ballistic tongues of salamanders as a case study, we explore whether the thermal robustness of elastic feeding mechanisms increases climatic niche breadth, expands geographic range size, and alters the dynamics of niche evolution. Combining phylogenetic comparative methods with global climate data, we find that the feeding mechanism imparts no discernable signal on either climatic niche properties or the evolutionary dynamics of most climatic niche parameters. Although biomechanical innovation in feeding influences many features of whole-organism performance, it does not appear to drive macro-climatic niche evolution in salamanders. We recommend that future work incorporate micro-scale environmental data to better capture the conditions that salamanders experience, and we discuss a few outstanding questions in this regard. Overall, this study lays the groundwork for an investigation into the evolutionary relationships between climatic niche and biomechanical traits in ectotherms.

9.
Nat Commun ; 13(1): 2881, 2022 05 24.
Article in English | MEDLINE | ID: mdl-35610218

ABSTRACT

Viviparity, an innovation enhancing maternal control over developing embryos, has evolved >150 times in vertebrates, and has been proposed as an adaptation to inhabit cold habitats. Yet, the behavioral, physiological, morphological, and life history features associated with live-bearing remain unclear. Here, we capitalize on repeated origins of viviparity in phrynosomatid lizards to tease apart the phenotypic patterns associated with this innovation. Using data from 125 species and phylogenetic approaches, we find that viviparous phrynosomatids repeatedly evolved a more cool-adjusted thermal physiology than their oviparous relatives. Through precise thermoregulatory behavior viviparous phrynosomatids are cool-adjusted even in warm environments, and oviparous phrynosomatids warm-adjusted even in cool environments. Convergent behavioral shifts in viviparous species reduce energetic demand during activity, which may help offset the costs of protracted gestation. Whereas dam and offspring body size are similar among both parity modes, annual fecundity repeatedly decreases in viviparous lineages. Thus, viviparity is associated with a lower energetic allocation into production. Together, our results indicate that oviparity and viviparity are on opposing ends of the fast-slow life history continuum in both warm and cool environments. In this sense, the 'cold climate hypothesis' fits into a broader range of energetic/life history trade-offs that influence transitions to viviparity.


Subject(s)
Lizards , Animals , Biological Evolution , Female , Live Birth , Lizards/physiology , Oviparity/physiology , Phylogeny , Pregnancy , Viviparity, Nonmammalian/physiology
10.
Proc Natl Acad Sci U S A ; 119(13): e2116948119, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35333650

ABSTRACT

SignificanceGeography molds how species evolve in space. Strong geographical barriers to movement, for instance, both inhibit dispersal between regions and allow isolated populations to diverge as new species. Weak barriers, by contrast, permit species range expansion and persistence. These factors present a conundrum: How strong must a barrier be before between-region speciation outpaces dispersal? We designed a phylogenetic model of dispersal, extinction, and speciation that allows regional features to influence rates of biogeographic change and applied it to the neotropical radiation of Anolis lizards. Separation by water induces a threefold steeper barrier to movement than equivalent distances over land. Our model will help biologists detect relationships between evolutionary processes and the spatial contexts in which they operate.


Subject(s)
Lizards , Animals , Biological Evolution , Genetic Speciation , Geography , Phylogeny , Phylogeography
11.
Evolution ; 76(S1): 49-66, 2022 02.
Article in English | MEDLINE | ID: mdl-34676550

ABSTRACT

Behavior is one of the major architects of evolution: by behaviorally modifying how they interact with their environments, organisms can influence natural selection, amplifying it in some cases and dampening it in others. In one of the earliest issues of Evolution, Charles Bogert proposed that regulatory behaviors (namely thermoregulation) shield organisms from selection and limit physiological evolution. Here, I trace the history surrounding the origin of this concept (now known as the "Bogert effect" or "behavioral inertia"), and its implications for physiological and evolutionary research throughout the 20th century. A key follow-up study in the early 21st century galvanized renewed interest in Bogert's classic ideas, and established a focus on slowdowns in the rate of evolution in response to regulatory behaviors. I illustrate recent progress on the Bogert effect in evolutionary research, and discuss the ecological variables that predict whether and how strongly the phenomenon unfolds. Based on these discoveries, I provide hypotheses for the Bogert effect across several scales: patterns of trait evolution within and among groups of species, spatial effects on the phenomenon, and its importance for speciation. I also discuss the inherent link between behavioral inertia and behavioral drive through an empirical case study linking the phenomena. Modern comparative approaches can help put the macroevolutionary implications of behavioral buffering to the test: I describe progress to date, and areas ripe for future investigation. Despite many advances, bridging microevolutionary processes with macroevolutionary patterns remains a persistent gap in our understanding of the Bogert effect, leaving wide open many avenues for deeper exploration.


Subject(s)
Biological Evolution , Body Temperature Regulation , Follow-Up Studies , Selection, Genetic
12.
J Exp Biol ; 224(24)2021 12 15.
Article in English | MEDLINE | ID: mdl-34761802

ABSTRACT

In response to a warming climate, many montane species are shifting upslope to track the emergence of preferred temperatures. Characterizing patterns of variation in metabolic, physiological and thermal traits along an elevational gradient, and the plastic potential of these traits, is necessary to understand current and future responses to abiotic constraints at high elevations, including limited oxygen availability. We performed a transplant experiment with the upslope-colonizing common wall lizard (Podarcis muralis) in which we measured nine aspects of thermal physiology and aerobic capacity in lizards from replicate low- (400 m above sea level, ASL) and high-elevation (1700 m ASL) populations. We first measured traits at their elevation of origin and then transplanted half of each group to extreme high elevation (2900 m ASL; above the current elevational range limit of this species), where oxygen availability is reduced by ∼25% relative to sea level. After 3 weeks of acclimation, we again measured these traits in both the transplanted and control groups. The multivariate thermal-metabolic phenotypes of lizards originating from different elevations differed clearly when measured at the elevation of origin. For example, high-elevation lizards are more heat tolerant than their low-elevation counterparts (counter-gradient variation). Yet, these phenotypes converged after exposure to reduced oxygen availability at extreme high elevation, suggesting limited plastic responses under this novel constraint. Our results suggest that high-elevation populations are well suited to their oxygen environments, but that plasticity in the thermal-metabolic phenotype does not pre-adapt these populations to colonize more hypoxic environments at higher elevations.


Subject(s)
Lizards , Acclimatization , Adaptation, Physiological , Altitude , Animals , Hypoxia , Lizards/physiology , Phenotype
13.
Front Microbiol ; 12: 718082, 2021.
Article in English | MEDLINE | ID: mdl-34671327

ABSTRACT

Microorganisms display a stunning metabolic diversity. Understanding the origin of this diversity requires understanding how macroevolutionary processes such as innovation and diversification play out in the microbial world. Metabolic networks, which govern microbial resource use, can evolve through different mechanisms, e.g., horizontal gene transfer or de novo evolution of enzymes and pathways. This process is governed by a combination of environmental factors, selective pressures, and the constraints imposed by the genetic architecture of metabolic networks. In addition, many independent results hint that the process of niche construction, by which organisms actively modify their own and each other's niches and selective pressures, could play a major role in microbial innovation and diversification. Yet, the general principles by which niche construction shapes microbial macroevolutionary patterns remain largely unexplored. Here, we discuss several new hypotheses and directions, and suggest metabolic modeling methods that could allow us to explore large-scale empirical genotype-phenotype-(G-P)-environment spaces in order to study the macroevolutionary effects of niche construction. We hope that this short piece will further stimulate a systematic and quantitative characterization of macroevolutionary patterns and processes in microbial metabolism.

14.
Integr Comp Biol ; 61(3): 773-782, 2021 10 04.
Article in English | MEDLINE | ID: mdl-34165524

ABSTRACT

Ray-finned fishes have two jaw systems, the oral and pharyngeal jaws, which perform functions associated with prey capture and processing, respectively. The structural independence of the jaw systems is recognized as having broad implications for the functional and ecological diversity of the radiation. Cichlids (and a few other lineages) possess a modified pharyngeal jaw system that enhances prey processing versatility and capacity. This innovation, pharyngognathy, is hypothesized to have freed the oral jaws to diversify in terms of prey capture. We test the relative role of prey capture properties (e.g., evasiveness) and prey processing (e.g., crushing) in driving divergent selection in the oral and pharyngeal jaws using a macroevolutionary model fitting framework. Evolutionary outcomes were asymmetric. All transitions between different properties of prey capture had a corresponding transition in properties of prey processing. In contrast, fewer than half the transitions in the properties of prey processing had a corresponding prey capture transition. This discrepancy was further highlighted by multi-peak models that reflect the opposing function of each jaw system, which fit better than null models for oral jaw traits, but not pharyngeal jaw traits. These results suggest that pharyngeal jaw function can change independently from the function of the oral jaws, but not vice versa. This finding highlights the possibility of ecological limits to the evolutionary decoupling of jaw systems. The independent actions of prey capture and processing may be decoupled, but their respective functional demands (and evolution) are not. Therefore, prey likely impose some degree of coordinated evolution between acquisition and processing functional morphology, even in decoupled jaw systems.


Subject(s)
Biological Evolution , Cichlids , Jaw , Animals , Biomechanical Phenomena , Cichlids/anatomy & histology , Jaw/anatomy & histology , Pharynx , Predatory Behavior
15.
Syst Biol ; 71(1): 93-104, 2021 12 16.
Article in English | MEDLINE | ID: mdl-33956152

ABSTRACT

Islands are thought to facilitate adaptive radiation by providing release from competition and predation. Anole lizards are considered a classic example of this phenomenon: different ecological specialists ("ecomorphs") evolved in the Caribbean Greater Antilles (Cuba, Hispaniola, Jamaica, and Puerto Rico), resulting in convergent assemblages that are not observed in mainland Latin America. Yet, the role of islands in facilitating adaptive radiation is more often implied than directly tested, leaving uncertain the role of biogeography in stimulating diversification. Here, we assess the proposed "island effect" on anole diversification using Bayesian phylogenetic comparative methods that explicitly incorporate rate heterogeneity across the tree and demonstrate two cases of would be false positives. We discovered that rates of speciation and morphological evolution of island and mainland anoles are equivalent, implying that islands provide no special context for exceptionally rapid diversification. Likewise, rates of evolution were equivalent between island anoles that arose via in situ versus dispersal-based mechanisms, and we found no evidence for island-specific rates of speciation or morphological evolution. Nonetheless, the origin of Anolis is characterized by a speciation pulse that slowed over time-a classic signature of waning ecological opportunity. Our findings cast doubt on the notion that islands catalyzed the anole adaptive radiation and instead point to a key innovation, adhesive toe pads, which facilitated the exploitation of many arboreal niches sparsely utilized by other iguanian lizards. The selective pressures responsible for arboreal niche diversification differ between islands and the mainland, but the tempo of diversification driven by these discordant processes is indistinguishable. [Anolis; Caribbean; key innovation; morphological evolution; RevBayes; speciation.].


Subject(s)
Biodiversity , Lizards , Animals , Bayes Theorem , Lizards/classification , Phylogeny , Species Specificity , West Indies
16.
J Exp Zool A Ecol Integr Physiol ; 335(1): 173-194, 2021 01.
Article in English | MEDLINE | ID: mdl-32970931

ABSTRACT

Ectothermic animals, such as amphibians and reptiles, are particularly sensitive to rapidly warming global temperatures. One response in these organisms may be to evolve aspects of their thermal physiology. If this response is adaptive and can occur on the appropriate time scale, it may facilitate population or species persistence in the changed environments. However, thermal physiological traits have classically been thought to evolve too slowly to keep pace with environmental change in longer-lived vertebrates. Even as empirical work of the mid-20th century offers mixed support for conservatism in thermal physiological traits, the generalization of low evolutionary potential in thermal traits is commonly invoked. Here, we revisit this hypothesis to better understand the mechanisms guiding the timing and patterns of physiological evolution. Characterizing the potential interactions among evolution, plasticity, behavior, and ontogenetic shifts in thermal physiology is critical for accurate prediction of how organisms will respond to our rapidly warming world. Recent work provides evidence that thermal physiological traits are not as evolutionarily rigid as once believed, with many examples of divergence in several aspects of thermal physiology at multiple phylogenetic scales. However, slow rates of evolution are often still observed, particularly at the warm end of the thermal performance curve. Furthermore, the context-specificity of many responses makes broad generalizations about the potential evolvability of traits tenuous. We outline potential factors and considerations that require closer scrutiny to understand and predict reptile and amphibian evolutionary responses to climate change, particularly regarding the underlying genetic architecture facilitating or limiting thermal evolution.


Subject(s)
Adaptation, Physiological , Amphibians/physiology , Body Temperature Regulation/physiology , Reptiles/physiology , Animals
17.
J Exp Zool A Ecol Integr Physiol ; 335(1): 136-145, 2021 01.
Article in English | MEDLINE | ID: mdl-32767500

ABSTRACT

As climate change marches on, rapidly rising temperatures shatter records every year, presenting ever-growing physiological challenges to organisms worldwide. Ectotherms rely on behavioral and physiological plasticity to contend with environmental fluctuations. Nonetheless, our understanding of thermal plasticity has been largely limited to laboratory settings. Here, we test whether aspects of thermal physiology respond to interannual shifts in thermal environment in a natural population of Phrynosoma orbiculare, a montane horned lizard, from Hidalgo, Mexico. At our field site, 2019 was markedly warmer than the year that preceded it. We detected population-level increases in three key thermal physiological traits: preferred temperature, the critical thermal minimum, and the critical thermal maximum. Thus, thermal phenotypes appear to shift in tandem in response to environmental fluctuations. A subset of individuals were resampled across years, allowing insight into plastic shifts within an organism's lifetime. We detected parallel increases in these lizards for the preferred temperature and the critical thermal minimum, but not for the critical thermal maximum. Our results support a growing body of literature indicating that preferred conditions and cold tolerance can be highly labile over the course of an organism's lifetime, whereas hardening over shorter time periods is more common for heat tolerance. Given that heat tolerance increased at the population-level, but not in resampled individuals, it is possible that rapid evolution occurred due to temperature increases. In short, physiological shifts can be observed in natural populations over relatively short timespans, and these shifts might reflect a combination of evolutionary and acclimatory responses.


Subject(s)
Lizards/physiology , Seasons , Temperature , Adaptation, Physiological , Animals , Time Factors
18.
Integr Comp Biol ; 60(5): 1309-1319, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32449771

ABSTRACT

Mechanical tradeoffs in performance are predicted to sculpt macroevolutionary patterns of morphological diversity across environmental gradients. Water depth shapes the amount of wave energy organisms' experience, which should result in evolutionary tradeoffs between speed and maneuverability in fish swimming morphology. Here, we tested whether morphological evolution would reflect functional tradeoffs in swimming performance in 131 species of wrasses and parrotfish (Family: Labridae) across a water depth gradient. We found that maximum water depth predicts variation in pectoral fin aspect ratio (AR) in wrasses, but not in parrotfish. Shallow-water wrasses exhibit wing-like pectoral fins that help with "flapping," which allows more efficient swimming at faster speeds. Deeper water species, in contrast, exhibit more paddle-like pectoral fins associated with enhanced maneuverability at slower speeds. Functional morphology responds to a number of different, potentially contrasting selective pressures. Furthermore, many-to-one mapping may release some traits from selection on performance at the expense of others. As such, deciphering the signatures of mechanical tradeoffs on phenotypic evolution will require integrating multiple aspects of ecological and morphological variation. As the field of evolutionary biomechanics moves into the era of big data, we will be uniquely poised to disentangle the intrinsic and extrinsic predictors of functional diversity.


Subject(s)
Animal Fins/anatomy & histology , Biological Evolution , Perciformes , Swimming , Animals , Biomechanical Phenomena , Perciformes/anatomy & histology , Water
19.
Evolution ; 74(5): 979-991, 2020 05.
Article in English | MEDLINE | ID: mdl-32190909

ABSTRACT

Macroclimatic niches are indirect and potentially inadequate predictors of the realized environmental conditions that many species experience. Consequently, analyses of niche evolution based on macroclimatic data alone may incompletely represent the evolutionary dynamics of species niches. Yet, understanding how an organisms' climatic (Grinnellian) niche responds to changing macroclimatic conditions is of vital importance for predicting their potential response to global change. In this study, we integrate microclimatic and macroclimatic data across 26 species of plethodontid salamanders to portray the relationship between microclimatic niche evolution in response to changing macroclimate. We demonstrate stronger phylogenetic signal in microclimatic niche variables than at the macroclimatic scale. Even so, we find that the microclimatic niche tracks climatic changes at the macroscale, but with a phylogenetic lag at million-year timescales. We hypothesize that behavioral tracking of the microclimatic niche over space and phenology generates the lag: salamanders preferentially select microclimates similar to their ancestral conditions rather than adapting with changes in physiology. We demonstrate that macroclimatic variables are weak predictors of niche evolution and that incorporating spatial scale into analyses of niche evolution is critical for predicting responses to climate change.


Subject(s)
Biological Evolution , Climate Change , Ecosystem , Microclimate , Phylogeny , Urodela/physiology , Animals , North Carolina , Ohio , Tennessee , Virginia , West Virginia
20.
Integr Comp Biol ; 59(3): 599-603, 2019 09 01.
Article in English | MEDLINE | ID: mdl-31353403

ABSTRACT

In recent years, the fields of evolutionary biomechanics and morphology have developed into a deeply quantitative and integrative science, resulting in a much richer understanding of how structural relationships shape macroevolutionary patterns. This issue highlights new research at the conceptual and experimental cutting edge, with a special focus on applying big data approaches to classic questions in form-function evolution. As this issue illustrates, new technologies and analytical tools are facilitating the integration of biomechanics, functional morphology, and phylogenetic comparative methods to catalyze a new, more integrative discipline. Although we are at the cusp of the big data generation of organismal biology, the field is nonetheless still data-limited. This data bottleneck is primarily due to the rate-limiting steps of digitizing specimens, recording and tracking organismal movements, and extracting patterns from massive datasets. Automation and machine-learning approaches hold great promise to help data generation keep pace with ideas. As a final and important note, almost all the research presented in this issue relied on specimens-totaling the tens of thousands-provided by museum collections. Without collection, curation, and conservation of museum specimens, the future of the field is much less bright.


Subject(s)
Biological Evolution , Invertebrates/anatomy & histology , Vertebrates/anatomy & histology , Animals , Big Data , Biomechanical Phenomena , Computational Biology , Invertebrates/physiology , Phylogeny , Vertebrates/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...