Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 15502, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36109598

ABSTRACT

Gulosibacter molinativorax ON4T is the only known organism to produce molinate hydrolase (MolA), which catalyses the breakdown of the thiocarbamate herbicide into azepane-1-carboxylic acid (ACA) and ethanethiol. A combined genomic and transcriptomic strategy was used to fully characterize the strain ON4T genome, particularly the molA genetic environment, to identify the potential genes encoding ACA degradation enzymes. Genomic data revealed that molA is the only catabolic gene of a novel composite transposon (Tn6311), located in a novel low copy number plasmid (pARLON1) harbouring a putative T4SS of the class FATA. pARLON1 had an ANI value of 88.2% with contig 18 from Agrococcus casei LMG 22410T draft genome. Such results suggest that pARLON1 is related to genomic elements of other Actinobacteria, although Tn6311 was observed only in strain ON4T. Furthermore, genomic and transcriptomic data demonstrated that the genes involved in ACA degradation are chromosomal. Based on their overexpression when growing in the presence of molinate, the enzymes potentially involved in the heterocyclic ring breakdown were predicted. Among these, the activity of a protein related to caprolactone hydrolase was demonstrated using heterologous expression. However, further studies are needed to confirm the role of the other putative enzymes.


Subject(s)
Actinomycetales , Herbicides , Actinobacteria , Actinomycetales/genetics , Azepines , Herbicides/metabolism , Hydrolases/genetics , Hydrolases/metabolism , Thiocarbamates
2.
Bioresour Technol ; 313: 123557, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32512428

ABSTRACT

Currently, the metagenomic study of the composting process has gained great importance since it has allowed the identification of the existence of microorganisms that, until now, had not been isolated during the process by traditional techniques. However, it is still complex to determine which bioindicators could reveal the degree of maturity and stability of a particular compost. Thereby, the main objective of this work was to demonstrate the possible correlation between traditional parameters of maturity and stability of compost, with other indicators of biodiversity in products highly heterogeneous from composting processes on an industrial scale. The results demonstrated the enormous influence of the raw materials in characterizing the products obtained. Even so, important relationships were established between the Chao1 and Shannon indexes, and certain parameters related to the maturity, stability and toxicity of the samples, such as nitrification index, humification rate, phenolic content, germination index or oxygen consumption.


Subject(s)
Composting , Biodiversity , Soil
3.
Front Plant Sci ; 9: 1320, 2018.
Article in English | MEDLINE | ID: mdl-30298075

ABSTRACT

Germplasm collections are basic tools for conservation, characterization, and efficient use of olive genetic resources. The identification of the olive cultivars maintained in the collections is an important ongoing task which has been performed by both, morphological and molecular markers. In the present study, based on the sequencing results of previous genomic projects, a new set of 1,043 EST-SNP markers has been identified. In order to evaluate its discrimination capacity and utility in diversity studies, this set of markers was used in a representative number of accessions from 20 different olive growing countries and maintained at the World Olive Germplasm Collection of IFAPA Centre 'Alameda del Obispo' (Córdoba, Spain), one of the world's largest olive germplasm bank. Thus, the cultivated material included: cultivars belonging to previously defined core collections by means of SSR markers and agronomical traits, well known homonymy cases, possible redundancies previously identified in the collection, and recently introduced accessions. Marker stability was tested in repeated analyses of a selected number of accessions, as well as in different trees and accessions belonging to the same cultivar. In addition, 15 genotypes from a cross 'Picual' × 'Arbequina' cultivars from the IFAPA olive breeding program and a set of 89 wild genotypes were also included in the study. Our results indicate that, despite their relatively wide variability, the new set of EST-SNPs displayed lower levels of genetic diversity than SSRs in the set of olive core collections tested. However, the EST-SNP markers displayed consistent and reliable results from different plant material sources and plant propagation events. The EST-SNPs revealed a clear cut off between inter- and intra-cultivar variation in olive. Besides, they were able to reliably discriminate among different accessions, to detect possible homonymy cases as well as efficiently ascertain the presence of redundant germplasm in the collection. Additionally, these markers were highly transferable to the wild genotypes. These results, together with the low genotyping error rates and the easy and fully automated procedure used to get the genotyping data, validate the new set of EST-SNPs as possible markers of choice for olive cultivar identification.

SELECTION OF CITATIONS
SEARCH DETAIL
...