Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 30(38): 385202, 2019 Sep 20.
Article in English | MEDLINE | ID: mdl-31212261

ABSTRACT

Two-dimensional randomly oriented nanowire (NW) networks, also called nanonets (NNs), have remarkable advantages including low-cost integration, good reproducibility and high sensitivity, which make them a promising material for electronic devices. With this work, we focus on the study of ZnO NNs as channel materials in field effect transistors (FETs). In our process, ZnO NWs were assembled in NNs by the liquid filtration method and were integrated in transistors, with the bottom-gate configuration, using simple technological steps. Non-encapsulated devices exhibited state of the art performances but their stability toward air exposure was poor. Using a proper encapsulation of the nanonets, with cheap, abundant and non-toxic oxides, we demonstrate our ability not only to stabilize their electrical properties, but also to enhance performance to values never reach before for ZnO NW-based transistors. Our best FETs exhibit a low Off-current while maintaining a very good On-current, which results in a I on/I off ratio exceeding 106 for a drain voltage of 5 V. The behavior of these ZnO NN-based FETs was studied for three different encapsulation materials, alumina (Al2O3), tin oxide (SnO2) and Al-doped ZnO (AZO). These results prove that ZnO NNs are highly promising materials for an easy and low-cost integration into FETs.

2.
Dalton Trans ; 46(33): 10986-10995, 2017 Aug 22.
Article in English | MEDLINE | ID: mdl-28770944

ABSTRACT

This work reports two new silver metalorganic precursors for the chemical vapor deposition of Ag metallic coatings. Both precursors are based on ß-diketonate adducts, namely, Ag(hfac)(L) (H-hfac = 1,1,1,5,5,5-hexafluoro-2,4-pentanedione), where L is 1,10-phenanthroline (phen) or 2,5,8,11-tetraoxadodecane (triglyme). Using these ligands, the designed precursors have better solubility in alcoholic solvents and are less toxic and costly than previously reported ones. The new precursors have been characterized and their crystallographic structure solved. With the new triglyme precursor, [Ag(triglyme)2]+[Ag(hfac)2]-, pure metallic Ag coatings made of Ag nanoparticles about 20 nm in diameter were succesfully deposited on glass and Si substrates using Aerosol Assisted Metalorganic CVD (AA-CVD).

3.
Nanoscale Horiz ; 2(2): 110-117, 2017 Mar 01.
Article in English | MEDLINE | ID: mdl-32260672

ABSTRACT

Coating of high-aspect-ratio nanostructures has previously been achieved using batch processes poorly suited for high-throughput manufacturing. It is demonstrated that uniform, nanoscale coatings can be rapidly deposited on zinc oxide nanorod arrays in open-air using an atmospheric pressure spatial deposition system. The morphology of the metal oxide coatings is examined and good electrical contact with the underlying nanorods is observed. The functionality of the coatings is demonstrated in colloidal quantum dot and hybrid solar cells.

4.
Nanotechnology ; 28(5): 055709, 2017 Feb 03.
Article in English | MEDLINE | ID: mdl-28032620

ABSTRACT

Silver nanowire (AgNW) networks are emerging as one of the most promising alternatives to indium tin oxide (ITO) for transparent electrodes in flexible electronic devices. They can be used in a variety of optoelectronic applications such as solar cells, touch panels and organic light-emitting diodes. Recently they have also proven to be very efficient when used as transparent heaters (THs). In addition to the study of AgNW networks acting as THs in regular use, i.e. at low voltage and moderate temperature, their stability and physical behavior at higher voltages and for longer durations should be studied in view of their integration into real devices. The properties of AgNW networks deposited by spray coating on glass or flexible transparent substrates are thoroughly studied via in situ measurements. The AgNW networks' behavior at different voltages for different durations and under different atmospheric conditions, both in air and under vacuum, has been examined. At low voltage, a reversible electrical response is observed while irreversibility and even failure are observed at higher voltages. In order to gain a deeper insight into the behavior of AgNW networks used as THs, simple but realistic physical models are proposed and are found to be in fair agreement with the experimental data. Finally, as the stability of AgNW networks is a key issue, we demonstrate that coating AgNW networks with a very thin layer of TiO2 using atomic layer deposition (ALD) improves the material's resistance against electrical and thermal instabilities without altering optical transmittance. We show that the critical annealing temperature associated to network breakdown increases from 270 °C for the as-deposited AgNW networks to 420 °C for AgNW networks coated with TiO2. Similarly, the electrical failure which occurs at 7 V for the as-deposited networks increases to 13 V for TiO2-coated networks. TiO2 is also proved to stabilize AgNW networks during long duration operation and at high voltage. Temperature higher than 235 °C was achieved at 7 V without failure.

5.
Nanotechnology ; 20(36): 365604, 2009 Sep 09.
Article in English | MEDLINE | ID: mdl-19687541

ABSTRACT

Large-area free-standing arrays of TiO(2) nanorods and nanotubes were selectively synthesized on transparent conducting indium tin oxide substrates using sol-gel electrophoresis and anodic alumina (AAO) thin film templates. The effect of sol-gel ageing on the growth of TiO(2) was explained, providing a tailored ability to produce nanotubes and nanorods. An annular tungsten base electrode, stemming from the anodization of the AAO template, was found to be crucial to the growth of nanotubes. This was supported by a study of substrate annealing in a reducing atmosphere. The work can be readily adapted for the fabrication of free-standing arrays of other metal, metal oxide, and complex oxide nanorod and nanotube arrays on conducting substrates.

6.
J Phys Chem B ; 109(13): 6193-203, 2005 Apr 07.
Article in English | MEDLINE | ID: mdl-16851685

ABSTRACT

The electronic structure of the recently isolated silver copper oxide Ag(2)Cu(2)O(4) is analyzed along with its precursor Ag(2)Cu(2)O(3) and similar binary oxides, Ag(2)O, AgO, CuO, and NaCuO(2), using X-ray photoemission (XPS) and X-ray absorption (XAS) measurements. The results for Ag(2)Cu(2)O(4) reveal an electronic distribution in which silver and copper share a delocalized valence scheme with both metals in formal oxidation states larger than the usual Ag(I) and Cu(II). Only one type of crystallographic silver or copper is found, but disorder-strain parameters are considerable and the possibilities of thermal disorder, atomic motion, oxygen contribution, mixed valence, and internal charge delocalization are considered. Classical coordination descriptions for oxidized silver are revisited in terms of this new internal charge delocalization framework found for the electronic structure.


Subject(s)
Copper/chemistry , Models, Molecular , Oxides/chemistry , Silver Compounds/chemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...