Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Am Coll Cardiol ; 59(8): 764-72, 2012 Feb 21.
Article in English | MEDLINE | ID: mdl-22340269

ABSTRACT

OBJECTIVES: This study sought to examine the role of lipoprotein-associated phospholipase A2 (Lp-PLA2/PLA2G7) in human inflammation and coronary atherosclerosis. BACKGROUND: Lp-PLA2 has emerged as a potential therapeutic target in coronary heart disease. Data supporting Lp-PLA2 are indirect and confounded by species differences; whether Lp-PLA2 is causal in coronary heart disease remains in question. METHODS: We examined inflammatory regulation of Lp-PLA2 during experimental endotoxemia in humans, probed the source of Lp-PLA2 in human leukocytes under inflammatory conditions, and assessed the relationship of variation in PLA2G7, the gene encoding Lp-PLA2, with coronary artery calcification. RESULTS: In contrast to circulating tumor necrosis factor-alpha and C-reactive protein, blood and monocyte Lp-PLA2 messenger ribonucleic acid decreased transiently, and plasma Lp-PLA2 mass declined modestly during endotoxemia. In vitro, Lp-PLA2 expression increased dramatically during human monocyte to macrophage differentiation and further in inflammatory macrophages and foamlike cells. Despite only a marginal association of single nucleotide polymorphisms in PLA2G7 with Lp-PLA2 activity or mass, numerous PLA2G7 single nucleotide polymorphisms were associated with coronary artery calcification. In contrast, several single nucleotide polymorphisms in CRP were significantly associated with plasma C-reactive protein levels but had no relation with coronary artery calcification. CONCLUSIONS: Circulating Lp-PLA2 did not increase during acute phase response in humans, whereas inflammatory macrophages and foam cells, but not circulating monocytes, are major leukocyte sources of Lp-PLA2. Common genetic variation in PLA2G7 is associated with subclinical coronary atherosclerosis. These data link Lp-PLA2 to atherosclerosis in humans while highlighting the challenge in using circulating Lp-PLA2 as a biomarker of Lp-PLA2 actions in the vasculature.


Subject(s)
1-Alkyl-2-acetylglycerophosphocholine Esterase/genetics , Coronary Artery Disease/genetics , Gene Expression Regulation , Inflammation/genetics , RNA, Messenger/genetics , 1-Alkyl-2-acetylglycerophosphocholine Esterase/metabolism , Adult , Biomarkers/metabolism , Coronary Artery Disease/enzymology , Coronary Artery Disease/pathology , Female , Humans , Inflammation/enzymology , Male , Polymorphism, Single Nucleotide , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...