Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 67(3): 2220-2235, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38284169

ABSTRACT

Thymic stromal lymphopoietin (TSLP) is an epithelial-derived pro-inflammatory cytokine involved in the development of asthma and other atopic diseases. We used Bicycle Therapeutics' proprietary phage display platform to identify bicyclic peptides (Bicycles) with high affinity for TSLP, a target that is difficult to drug with conventional small molecules due to the extended protein-protein interactions it forms with both receptors. The hit series was shown to bind to TSLP in a hotspot, that is also used by IL-7Rα. Guided by the first X-ray crystal structure of a small peptide binding to TSLP and the identification of key metabolites, we were able to improve the proteolytic stability of this series in lung S9 fractions without sacrificing binding affinity. This resulted in the potent Bicycle 46 with nanomolar affinity to TSLP (KD = 13 nM), low plasma clearance of 6.4 mL/min/kg, and an effective half-life of 46 min after intravenous dosing to rats.


Subject(s)
Asthma , Thymic Stromal Lymphopoietin , Animals , Rats , Asthma/drug therapy , Bicycling , Cytokines/metabolism , Peptides, Cyclic/chemistry , Peptides, Cyclic/metabolism
2.
J Med Chem ; 65(21): 14337-14347, 2022 11 10.
Article in English | MEDLINE | ID: mdl-36204777

ABSTRACT

Bicycle toxin conjugates (BTCs) are a promising new class of molecules for targeted delivery of toxin payloads into tumors. Herein we describe the discovery of BT8009, a Nectin-4 targeting BTC currently under clinical evaluation. Nectin-4 is overexpressed in multiple tumor types and is a clinically validated target for selective delivery of cytotoxic payloads. A Nectin-4 targeting bicyclic peptide was identified by phage display, which showed highly selective binding for Nectin-4 but suffered from low plasma stability and poor physicochemical properties. Multiparameter chemical optimization involving introduction of non-natural amino acids resulted in a lead Bicycle that demonstrated high affinity for Nectin-4, good stability in biological matrices, and a much-improved physicochemical profile. The optimized Bicycle was conjugated to the cytotoxin Monomethyl auristatin E via a cleavable linker to give the targeted drug conjugate BT8009, which demonstrates potent anticancer activity in in vivo rodent models.


Subject(s)
Antineoplastic Agents , Immunoconjugates , Immunotoxins , Neoplasms , Humans , Nectins , Bicycling , Neoplasms/drug therapy , Neoplasms/pathology , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Antineoplastic Agents/chemistry , Cell Adhesion Molecules , Cell Line, Tumor
3.
Mol Cancer Ther ; 21(12): 1747-1756, 2022 12 02.
Article in English | MEDLINE | ID: mdl-36112771

ABSTRACT

Multiple tumor types overexpress Nectin-4 and the antibody-drug conjugate (ADC), enfortumab vedotin (EV) shows striking efficacy in clinical trials for metastatic urothelial cancer, which expresses high levels of Nectin-4, validating Nectin-4 as a clinical target for toxin delivery in this indication. Despite excellent data in urothelial cancer, little efficacy data are reported for EV in other Nectin-4 expressing tumors and EV therapy can produce significant toxicities in many patients, frequently leading to discontinuation of treatment. Thus, additional approaches to this target with the potential to extend utility and reduce toxicity are warranted. We describe the preclinical development of BT8009, a "Bicycle Toxin Conjugate" (BTC) consisting of a Nectin-4-binding bicyclic peptide, a cleavable linker system and the cell penetrant toxin mono-methylauristatin E (MMAE). BT8009 shows significant antitumor activity in preclinical tumor models, across a variety of cancer indications and is well tolerated in preclinical safety studies. In several models, it shows superior or equivalent antitumor activity to an EV analog. As a small hydrophilic peptide-based drug BT8009 rapidly diffuses from the systemic circulation, through tissues to penetrate the tumor and target tumor cells. It is renally eliminated from the circulation, with a half-life of 1-2 hours in rat and non-human primate. These physical and PK characteristics differentiate BT8009 from ADCs and may provide benefit in terms of tumor penetration and reduced systemic exposure. BT8009 is currently in a Phase 1/2 multicenter clinical trial across the US, Canada, and Europe, enrolling patients with advanced solid tumors associated with Nectin-4 expression.


Subject(s)
Carcinoma, Transitional Cell , Immunoconjugates , Immunotoxins , Rats , Animals , Nectins , Bicycling , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Cell Adhesion Molecules/metabolism , Carcinoma, Transitional Cell/drug therapy
4.
J Med Chem ; 65(14): 9858-9872, 2022 07 28.
Article in English | MEDLINE | ID: mdl-35819182

ABSTRACT

CD137 (4-1BB) is a co-stimulatory receptor on immune cells and Nectin-4 is a cell adhesion molecule that is overexpressed in multiple tumor types. Using a series of poly(ethylene glycol) (PEG)-based linkers, synthetic bicyclic peptides targeting CD137 were conjugated to Bicycles targeting Nectin-4. The resulting bispecific molecules were potent CD137 agonists that require the presence of both Nectin-4-expressing tumor cells and CD137-expressing immune cells for activity. A multipronged approach was taken to optimize these Bicycle tumor-targeted immune cell agonists by exploring the impact of chemical configuration, binding affinity, and pharmacokinetics on CD137 agonism and antitumor activity. This effort resulted in the discovery of BT7480, which elicited robust CD137 agonism and maximum antitumor activity in syngeneic mouse models. A tumor-targeted approach to CD137 agonism using low-molecular-weight, short-acting molecules with high tumor penetration is a yet unexplored path in the clinic, where emerging data suggest that persistent target engagement, characteristic of biologics, may lead to suboptimal immune response.


Subject(s)
Neoplasms , Animals , Cell Adhesion Molecules , Mice , Nectins , Neoplasms/drug therapy , Tumor Necrosis Factor Receptor Superfamily, Member 9/metabolism
5.
Bioconjug Chem ; 33(8): 1441-1445, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35894801

ABSTRACT

Bicycles are constrained bicyclic peptides formed through reaction of three cysteine residues within a linear sequence with a trivalent, symmetrical small molecule scaffold. Bicycles with high binding affinities to therapeutically important targets can be discovered using screening technologies such as phage display. Increasing the chemical diversity of Bicycles should improve the probability of finding hits to new targets and can be achieved by expanding the toolbox of Bicycle forming chemistries. Gold(III) S-arylation has recently been described as a method for the efficient bioconjugation of cysteine residues under conditions compatible with phage display. Herein, we explore the scope and generality of this methodology for Bicycle construction through the synthesis and evaluation of four novel tris-Gold complexes. These new scaffolds were systematically reacted with a variety of peptide sequences, varying in amino acid loop lengths. All four scaffolds proved to be capable and selective reactive partners for each peptide sequence and afforded the desired Bicycle products in 13-48% isolated yield. This work exemplifies Gold-mediated arylation as a general approach for construction of novel, highly constrained Bicycles.


Subject(s)
Cysteine , Gold , Amino Acid Sequence , Bicycling , Cysteine/chemistry , Gold/chemistry , Peptide Library , Peptides/chemistry
6.
J Med Chem ; 63(8): 4107-4116, 2020 04 23.
Article in English | MEDLINE | ID: mdl-32202781

ABSTRACT

Bicycles are constrained bicyclic peptides that represent a promising binding modality for use in targeted drug conjugates. A phage display screen against EphA2, a receptor tyrosine kinase highly expressed in a number of solid tumors, identified a number of Bicycle families with low nanomolar affinity. A Bicycle toxin conjugate (BTC) was generated by derivatization of one of these Bicycles with the potent cytotoxin DM1 via a cleavable linker. This BTC demonstrated potent antitumor activity in vivo but was poorly tolerated, which was hypothesized to be the result of undesired liver uptake caused by poor physicochemical properties. Chemical optimization of a second Bicycle, guided by structural biology, provided a high affinity, metabolically stable Bicycle with improved physicochemical properties. A BTC incorporating this Bicycle also demonstrated potent antitumor activity and was very well tolerated when compared to the initial BTC. Phage display selection followed by chemical optimization of Bicycles can deliver potent drug conjugates with favorable pharmaceutical properties.


Subject(s)
Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Cytotoxins/administration & dosage , Drug Delivery Systems/methods , Ephrin-A2/antagonists & inhibitors , Amino Acid Sequence , Animals , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Bridged Bicyclo Compounds, Heterocyclic/metabolism , Cytotoxins/chemistry , Cytotoxins/metabolism , Ephrin-A2/metabolism , Female , Humans , Liver/diagnostic imaging , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Protein Structure, Secondary , Protein Structure, Tertiary , Receptor, EphA2 , Xenograft Model Antitumor Assays/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...