Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
mBio ; : e0245823, 2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37905801

ABSTRACT

The E6 protein encoded by the murine papillomavirus (MmuPV1) is essential for MmuPV1-induced skin disease. Our previous work has identified a number of cellular interacting partners of MmuPV1 E6 and E7 through affinity purification/mass spectrometry analysis. These studies revealed that MmuPV1 E6 potently inhibits keratinocyte differentiation through multiple molecular mechanisms including inhibition of NOTCH and TGF-ß signaling. Here, we report that MmuPV1 E6 has additional important oncogenic activities when expressed in its natural host cells, mouse keratinocytes, including increasing proliferation, overcoming density-mediated growth arrest, and proliferation under conditions of limited supply of growth factors. Unbiased proteomic/transcriptomic analyses of mouse keratinocytes expressing MmuPV1 E6 substantiated its effect on these cellular processes and divulged that some of these effects may be mediated in part through it upregulating E2F activity. Our analyses also revealed that MmuPV1 E6 may alter other cancer hallmarks including evasion of growth suppressors, inhibition of immune response, resistance to cell death, and alterations in DNA damage response. Collectively, our results suggest that MmuPV1 E6 is a major driver of multiple hallmarks of cancer in MmuPV1's natural host cells, mouse keratinocytes.IMPORTANCEThe Mus musculus papillomavirus 1 (MmuPV1) E6 and E7 proteins are required for MmuPV1-induced disease. Our understanding of the activities of MmuPV1 E6 has been based on affinity purification/mass spectrometry studies where cellular interacting partners of MmuPV1 E6 were identified, and these studies revealed that MmuPV1 E6 can inhibit keratinocyte differentiation through multiple mechanisms. We report that MmuPV1 E6 encodes additional activities including the induction of proliferation, resistance to density-mediated growth arrest, and decreased dependence on exogenous growth factors. Proteomic and transcriptomic analyses provided evidence that MmuPV1 E6 increases the expression and steady state levels of a number of cellular proteins that promote cellular proliferation and other hallmarks of cancer. These results indicate that MmuPV1 E6 is a major driver of MmuPV1-induced pathogenesis.

2.
Nat Cell Biol ; 25(11): 1616-1624, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37813972

ABSTRACT

Coenzyme Q (CoQ, ubiquinone) is an essential cellular cofactor composed of a redox-active quinone head group and a long hydrophobic polyisoprene tail. How mitochondria access cytosolic isoprenoids for CoQ biosynthesis is a longstanding mystery. Here, via a combination of genetic screening, metabolic tracing and targeted uptake assays, we reveal that Hem25p-a mitochondrial glycine transporter required for haem biosynthesis-doubles as an isopentenyl pyrophosphate (IPP) transporter in Saccharomyces cerevisiae. Mitochondria lacking Hem25p failed to efficiently incorporate IPP into early CoQ precursors, leading to loss of CoQ and turnover of CoQ biosynthetic proteins. Expression of Hem25p in Escherichia coli enabled robust IPP uptake and incorporation into the CoQ biosynthetic pathway. HEM25 orthologues from diverse fungi, but not from metazoans, were able to rescue hem25∆ CoQ deficiency. Collectively, our work reveals that Hem25p drives the bulk of mitochondrial isoprenoid transport for CoQ biosynthesis in fungi.


Subject(s)
Mitochondrial Diseases , Saccharomyces cerevisiae Proteins , Humans , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Mitochondrial Diseases/genetics , Mitochondrial Diseases/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Ataxia/genetics , Ataxia/metabolism , Mitochondria/metabolism , Ubiquinone/genetics , Ubiquinone/metabolism
3.
Nat Commun ; 14(1): 6431, 2023 10 13.
Article in English | MEDLINE | ID: mdl-37833277

ABSTRACT

PPTC7 is a resident mitochondrial phosphatase essential for maintaining proper mitochondrial content and function. Newborn mice lacking Pptc7 exhibit aberrant mitochondrial protein phosphorylation, suffer from a range of metabolic defects, and fail to survive beyond one day after birth. Using an inducible knockout model, we reveal that loss of Pptc7 in adult mice causes marked reduction in mitochondrial mass and metabolic capacity with elevated hepatic triglyceride accumulation. Pptc7 knockout animals exhibit increased expression of the mitophagy receptors BNIP3 and NIX, and Pptc7-/- mouse embryonic fibroblasts (MEFs) display a major increase in mitophagy that is reversed upon deletion of these receptors. Our phosphoproteomics analyses reveal a common set of elevated phosphosites between perinatal tissues, adult liver, and MEFs, including multiple sites on BNIP3 and NIX, and our molecular studies demonstrate that PPTC7 can directly interact with and dephosphorylate these proteins. These data suggest that Pptc7 deletion causes mitochondrial dysfunction via dysregulation of several metabolic pathways and that PPTC7 may directly regulate mitophagy receptor function or stability. Overall, our work reveals a significant role for PPTC7 in the mitophagic response and furthers the growing notion that management of mitochondrial protein phosphorylation is essential for ensuring proper organelle content and function.


Subject(s)
Mitochondrial Proteins , Mitophagy , Animals , Mice , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mitophagy/genetics , Fibroblasts/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Phosphoric Monoester Hydrolases/metabolism
4.
Physiol Rep ; 11(17): e15814, 2023 09.
Article in English | MEDLINE | ID: mdl-37667413

ABSTRACT

Cartilage acidic protein-1 (CRTAC1) is produced by several cell types, including Type 2 alveolar epithelial (T2AE) cells that are targeted by SARS-CoV2. Plasma CRTAC1 is known based on proteomic surveys to be low in patients with severe COVID-19. Using an ELISA, we found that patients treated for COVID-19 in an ICU almost uniformly had plasma concentrations of CRTAC1 below those of healthy controls. Magnitude of decrease in CRTAC1 distinguished COVID-19 from other causes of acute respiratory decompensation and correlated with established metrics of COVID-19 severity. CRTAC1 concentrations below those of controls were found in some patients a year after hospitalization with COVID-19, long COVID after less severe COVID-19, or chronic obstructive pulmonary disease. Decreases in CRTAC1 in severe COVID-19 correlated (r = 0.37, p = 0.0001) with decreases in CFP (properdin), which interacts with CRTAC1. Thus, decreases of CRTAC1 associated with severe COVID-19 may result from loss of production by T2AE cells or co-depletion with CFP. Determination of significance of and reasons behind decreased CRTAC1 concentration in a subset of patients with long COVID will require analysis of roles of preexisting lung disease, impact of prior acute COVID-19, age, and other confounding variables in a larger number of patients.


Subject(s)
COVID-19 , Calcium-Binding Proteins , Humans , Calcium-Binding Proteins/blood , Post-Acute COVID-19 Syndrome , Proteomics , RNA, Viral , SARS-CoV-2
5.
bioRxiv ; 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36909604

ABSTRACT

Pptc7 is a resident mitochondrial phosphatase essential for maintaining proper mitochondrial content and function. Newborn mice lacking Pptc7 exhibit aberrant mitochondrial protein phosphorylation, suffer from a range of metabolic defects, and fail to survive beyond one day after birth. Using an inducible knockout model, we reveal that loss of Pptc7 in adult mice causes marked reduction in mitochondrial mass concomitant with elevation of the mitophagy receptors Bnip3 and Nix. Consistently, Pptc7-/- mouse embryonic fibroblasts (MEFs) exhibit a major increase in mitophagy that is reversed upon deletion of these receptors. Our phosphoproteomics analyses reveal a common set of elevated phosphosites between perinatal tissues, adult liver, and MEFs-including multiple sites on Bnip3 and Nix. These data suggest that Pptc7 deletion causes mitochondrial dysfunction via dysregulation of several metabolic pathways and that Pptc7 may directly regulate mitophagy receptor function or stability. Overall, our work reveals a significant role for Pptc7 in the mitophagic response and furthers the growing notion that management of mitochondrial protein phosphorylation is essential for ensuring proper organelle content and function.

6.
bioRxiv ; 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36993473

ABSTRACT

Coenzyme Q (CoQ, ubiquinone) is an essential cellular cofactor comprised of a redox-active quinone head group and a long hydrophobic polyisoprene tail. How mitochondria access cytosolic isoprenoids for CoQ biosynthesis is a longstanding mystery. Here, via a combination of genetic screening, metabolic tracing, and targeted uptake assays, we reveal that Hem25p-a mitochondrial glycine transporter required for heme biosynthesis-doubles as an isopentenyl pyrophosphate (IPP) transporter in Saccharomyces cerevisiae. Mitochondria lacking Hem25p fail to efficiently incorporate IPP into early CoQ precursors, leading to loss of CoQ and turnover of CoQ biosynthetic proteins. Expression of Hem25p in Escherichia coli enables robust IPP uptake demonstrating that Hem25p is sufficient for IPP transport. Collectively, our work reveals that Hem25p drives the bulk of mitochondrial isoprenoid transport for CoQ biosynthesis in yeast.

7.
Article in English | MEDLINE | ID: mdl-36857849

ABSTRACT

The determination of chiral purity is critical to the evaluation of the quality of peptide pharmaceutical products. For synthetic peptides, the undesirable d-isomers can be introduced as impurities in amino acid starting materials and can also be formed during peptide synthesis and in some cases during product shelf life. A chiral high-performance liquid chromatography-electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) method is described that facilitates rapid and accurate determination of amino acid chiral purity of a peptide. The peptide is hydrolyzed in deuterated acid to facilitate correction for any racemization occurring during this step of sample preparation, and the amino acids are subsequently separated by chiral chromatography interfaced with ESI-MS/MS for quantitation. The amino acid samples are analyzed directly following hydrolysis using high-low chromatography and extraction of selected ion response, providing efficiency and simplicity by avoiding the derivatization steps and multiple external standards required by traditional methodologies. GMP method validation feasibility is described for all nineteen chiral proteogenic amino acids. The practical application of the chiral HPLC-ESI-MS/MS method was demonstrated through the recovery of d-amino acid substitutions at each residue of an octapeptide across the 0.1-1.0 % range of interest. The method was applied to the analysis of four model peptides, each consisting of 8-14 amino acid residues, and the results were comparable to those provided by traditional testing methods.


Subject(s)
Spectrometry, Mass, Electrospray Ionization , Tandem Mass Spectrometry , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Spectrometry, Mass, Electrospray Ionization/methods , Amino Acids/chemistry , Peptides , Amines
8.
Anal Chem ; 95(2): 659-667, 2023 01 17.
Article in English | MEDLINE | ID: mdl-36594155

ABSTRACT

Multi-omics analysis is a powerful and increasingly utilized approach to gain insight into complex biological systems. One major hindrance with multi-omics, however, is the lengthy and wasteful sample preparation process. Preparing samples for mass spectrometry (MS)-based multi-omics involves extraction of metabolites and lipids with organic solvents, precipitation of proteins, and overnight digestion of proteins. These existing workflows are disparate and laborious. Here, we present a simple, efficient, and unified approach to prepare lipids, metabolites, and proteins for MS analysis. Our approach, termed the Bead-enabled Accelerated Monophasic Multi-omics (BAMM) method, combines an n-butanol-based monophasic extraction with unmodified magnetic beads and accelerated protein digestion. We demonstrate that the BAMM method affords comparable depth, quantitative reproducibility, and recovery of biomolecules as state-of-the-art multi-omics methods (e.g., Matyash extraction and overnight protein digestion). However, the BAMM method only requires about 3 h to perform, which saves 11 steps and 19 h on average compared to published multi-omics methods. Furthermore, we validate the BAMM method for multiple sample types and formats (biofluid, culture plate, and pellet) and show that in all cases, it produces high biomolecular coverage and data quality.


Subject(s)
Multiomics , Proteins , Reproducibility of Results , Proteins/analysis , Mass Spectrometry/methods , Lipids/chemistry
9.
J Proteome Res ; 21(9): 2211-2223, 2022 09 02.
Article in English | MEDLINE | ID: mdl-35980772

ABSTRACT

IQGAP1 (IQ motif-containing GTPase-activating protein 1) scaffolds several signaling pathways in mammalian cells that are implicated in carcinogenesis, including the RAS and PI3K pathways that involve multiple protein kinases. IQGAP1 has been shown to promote head and neck squamous cell carcinoma (HNSCC); however, the underlying mechanism(s) remains unclear. Here, we report a mass spectrometry-based analysis identifying differences in phosphorylation of cellular proteins in vivo and in vitro in the presence or absence of IQGAP1. By comparing the esophageal phosphoproteome profiles between Iqgap1+/+ and Iqgap1-/- mice, we identified RNA splicing as one of the most altered cellular processes. Serine/arginine-rich splicing factor 6 (SRSF6) was the protein with the most downregulated levels of phosphorylation in Iqgap1-/- tissue. We confirmed that the absence of IQGAP1 reduced SRSF6 phosphorylation both in vivo and in vitro. We then expanded our analysis to human normal oral keratinocytes. Again, we found factors involved in RNA splicing to be highly altered in the phosphoproteome profile upon genetic disruption of IQGAP1. Both the Clinical Proteomic Tumor Analysis Consortium (CPTAC) and the Cancer Genome Atlas (TCGA) data sets indicate that phosphorylation of splicing-related proteins is important in HNSCC prognosis. The Biological General Repository for Interaction Datasets (BioGRID) repository also suggested multiple interactions between IQGAP1 and splicing-related proteins. Based on these collective observations, we propose that IQGAP1 regulates the phosphorylation of splicing proteins, which potentially affects their splicing activities and, therefore, contributes to HNSCC. Raw data are available from the MassIVE database with identifier MSV000087770.


Subject(s)
Head and Neck Neoplasms , Phosphatidylinositol 3-Kinases , Animals , Head and Neck Neoplasms/genetics , Humans , Mammals/metabolism , Mice , Phosphatidylinositol 3-Kinases/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Proteomics , RNA Splicing/genetics , Serine-Arginine Splicing Factors/genetics , Serine-Arginine Splicing Factors/metabolism , Squamous Cell Carcinoma of Head and Neck , ras GTPase-Activating Proteins/genetics , ras GTPase-Activating Proteins/metabolism
10.
Synth Syst Biotechnol ; 7(2): 738-749, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35387233

ABSTRACT

Metabolic engineering strategies have been successfully implemented to improve the production of isobutanol, a next-generation biofuel, in Saccharomyces cerevisiae. Here, we explore how two of these strategies, pathway re-localization and redox cofactor-balancing, affect the performance and physiology of isobutanol producing strains. We equipped yeast with isobutanol cassettes which had either a mitochondrial or cytosolic localized isobutanol pathway and used either a redox-imbalanced (NADPH-dependent) or redox-balanced (NADH-dependent) ketol-acid reductoisomerase enzyme. We then conducted transcriptomic, proteomic and metabolomic analyses to elucidate molecular differences between the engineered strains. Pathway localization had a large effect on isobutanol production with the strain expressing the mitochondrial-localized enzymes producing 3.8-fold more isobutanol than strains expressing the cytosolic enzymes. Cofactor-balancing did not improve isobutanol titers and instead the strain with the redox-imbalanced pathway produced 1.5-fold more isobutanol than the balanced version, albeit at low overall pathway flux. Functional genomic analyses suggested that the poor performances of the cytosolic pathway strains were in part due to a shortage in cytosolic Fe-S clusters, which are required cofactors for the dihydroxyacid dehydratase enzyme. We then demonstrated that this cofactor limitation may be partially recovered by disrupting iron homeostasis with a fra2 mutation, thereby increasing cellular iron levels. The resulting isobutanol titer of the fra2 null strain harboring a cytosolic-localized isobutanol pathway outperformed the strain with the mitochondrial-localized pathway by 1.3-fold, demonstrating that both localizations can support flux to isobutanol.

11.
Cell Syst ; 12(1): 23-40.e7, 2021 01 20.
Article in English | MEDLINE | ID: mdl-33096026

ABSTRACT

We performed RNA-seq and high-resolution mass spectrometry on 128 blood samples from COVID-19-positive and COVID-19-negative patients with diverse disease severities and outcomes. Quantified transcripts, proteins, metabolites, and lipids were associated with clinical outcomes in a curated relational database, uniquely enabling systems analysis and cross-ome correlations to molecules and patient prognoses. We mapped 219 molecular features with high significance to COVID-19 status and severity, many of which were involved in complement activation, dysregulated lipid transport, and neutrophil activation. We identified sets of covarying molecules, e.g., protein gelsolin and metabolite citrate or plasmalogens and apolipoproteins, offering pathophysiological insights and therapeutic suggestions. The observed dysregulation of platelet function, blood coagulation, acute phase response, and endotheliopathy further illuminated the unique COVID-19 phenotype. We present a web-based tool (covid-omics.app) enabling interactive exploration of our compendium and illustrate its utility through a machine learning approach for prediction of COVID-19 severity.


Subject(s)
COVID-19/blood , COVID-19/genetics , Machine Learning , Sequence Analysis, RNA/methods , Severity of Illness Index , Aged , Aged, 80 and over , COVID-19/therapy , Cohort Studies , Female , Gelsolin/blood , Gelsolin/genetics , Humans , Inflammation Mediators/blood , Male , Middle Aged , Neutrophils/metabolism , Principal Component Analysis/methods
12.
Anal Chem ; 92(24): 15959-15967, 2020 12 15.
Article in English | MEDLINE | ID: mdl-33270415

ABSTRACT

Mass spectrometry is the premier tool for identifying and quantifying protein phosphorylation on a global scale. Analysis of phosphopeptides requires enrichment, and even after the samples remain highly complex and exhibit broad dynamic range of abundance. Achieving maximal depth of coverage for phosphoproteomics therefore typically necessitates offline liquid chromatography prefractionation, a time-consuming and laborious approach. Here, we incorporate a recently commercialized aerodynamic high-field asymmetric waveform ion mobility spectrometry (FAIMS) device into the phosphoproteomic workflow. We characterize the effects of phosphorylation on the FAIMS separation, describe optimized compensation voltage settings for unlabeled phosphopeptides, and demonstrate the advantages of FAIMS-enabled gas-phase fractionation. Standard FAIMS single-shot analyses identified around 15-20% additional phosphorylation sites than control experiments without FAIMS. In comparison to liquid chromatography prefractionation, FAIMS experiments yielded similar or superior results when analyzing up to four discrete gas-phase fractions. Although using FAIMS led to a modest reduction in the precision of quantitative measurements when using label-free approaches, the data collected with FAIMS yielded a 26% increase in total reproducible measurements. Overall, we conclude that the new FAIMS technology is a valuable addition to any phosphoproteomic workflow, with greater benefits emerging from longer analyses and higher amounts of material.


Subject(s)
Mass Spectrometry/instrumentation , Phosphoproteins/metabolism , Proteomics/instrumentation , Binding Sites , Phosphorylation , Workflow
13.
medRxiv ; 2020 Jul 19.
Article in English | MEDLINE | ID: mdl-32743614

ABSTRACT

We performed RNA-Seq and high-resolution mass spectrometry on 128 blood samples from COVID-19 positive and negative patients with diverse disease severities. Over 17,000 transcripts, proteins, metabolites, and lipids were quantified and associated with clinical outcomes in a curated relational database, uniquely enabling systems analysis and cross-ome correlations to molecules and patient prognoses. We mapped 219 molecular features with high significance to COVID-19 status and severity, many involved in complement activation, dysregulated lipid transport, and neutrophil activation. We identified sets of covarying molecules, e.g., protein gelsolin and metabolite citrate or plasmalogens and apolipoproteins, offering pathophysiological insights and therapeutic suggestions. The observed dysregulation of platelet function, blood coagulation, acute phase response, and endotheliopathy further illuminated the unique COVID-19 phenotype. We present a web-based tool (covid-omics.app) enabling interactive exploration of our compendium and illustrate its utility through a comparative analysis with published data and a machine learning approach for prediction of COVID-19 severity.

14.
Ecol Evol ; 6(10): 3280-8, 2016 May.
Article in English | MEDLINE | ID: mdl-27252833

ABSTRACT

Despite the presence of reproductive barriers between species, interspecific gene introgression has been documented in a range of natural systems. Comparing patterns of genetic introgression in biparental versus matrilineal markers can potentially reveal sex-specific barriers to interspecific gene flow. Hybridization has been documented in the freshwater turtles Graptemys geographica and G. pseudogeographica, whose ranges are largely sympatric. Morphological differentiation between the species is restricted to females, with female G. geographica possessing large heads and jaws compared to the narrow heads of G. pseudogeographica females. If hybrid females are morphologically intermediate, they may be less successful at exploiting parental feeding niches, thereby limiting the introgression of maternally inherited, but not biparental, molecular markers. We paired sequence data with stable isotope analysis and examined sex-specific genetic introgression and trophic differentiation in sympatric populations of G. geographica and G. pseudogeographica. We observed introgression from G. pseudogeographica into G. geographica at three nuclear loci, but not at the mitochondrial locus. Analysis of ∂(15)N and ∂(13)C was consistent with species differences in trophic positioning in females, but not males. These results suggest that ecological divergence in females may reduce the opportunity for gene flow in this system.

SELECTION OF CITATIONS
SEARCH DETAIL
...