Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 3707, 2017 06 16.
Article in English | MEDLINE | ID: mdl-28623360

ABSTRACT

Endothelial cells (ECs) are major modulators of hemostasis by expressing and releasing pro- and anticoagulant mediators into the circulation. Previous studies showed that cultured ECs release procoagulant mediators into cell culture supernatants as evidenced by the reduction of viscoelastic clotting time. This effect was reversed with an anti-tissue factor antibody. Here, we aimed to investigate whether tissue factor (TF) was released by endothelial-derived extracellular vesicles (EVs) and which portion of the released vesicles displays the most prominent procoagulant properties. After stimulation of ECs with tumor-necrosis factor-α (TNF-α) the supernatants of EC cultures were subjected to differential centrifugation steps to collect larger and smaller EVs which were then characterised by nanoparticle tracking analysis (NTA) and flow cytometry. Mixed with fresh human blood and analysed by thromboelastometry EVs exerted a significant procoagulant stimulus, which could be partly reversed by addition of an anti-TF antibody. Moreover, TF activity was confirmed in the centrifuged fractions. In summary, our results provide evidence of the procoagulant potential of smaller and larger endothelial-derived EV fractions detected by thromboelastometry. The observed effect is most likely due to the release of TF-bearing EVs of different dimensions, which are released upon TNF-α stimulation of endothelial cell cultures.


Subject(s)
Coagulants/metabolism , Coagulants/pharmacology , Endothelial Cells/metabolism , Extracellular Vesicles/metabolism , Thrombelastography , Biomarkers , Cells, Cultured , Chemical Fractionation , Flow Cytometry , Humans , Thrombelastography/methods , Thromboplastin/metabolism
2.
J Tissue Eng Regen Med ; 9(2): 127-36, 2015 Feb.
Article in English | MEDLINE | ID: mdl-23038666

ABSTRACT

Vascularization of engineered tissues is one of the current challenges in tissue engineering. Several strategies aim to generate a prevascularized scaffold which can be implanted at sites of injury or trauma. Endothelial cells derived from peripheral blood (outgrowth endothelial cells, OECs) display promising features for vascular tissue engineering, including their autologous nature, capacity for proliferation and ability to form mature vessels. In this study we investigated the ability of OECs to form vascular structures in co-culture with adipose-derived stem cells (ASCs) in a fibrin matrix. Using microcarrier beads coated with OECs, we showed ingrowth of endothelial cells in the fibrin scaffold. Furthermore, co-cultures with ASCs induced vessel formation, as evidenced by immunostaining for CD31. The degradation of fibrin is at least in part mediated by expression of matrix metalloproteinase-14. Moreover, we showed OEC/ASC-induced vessel-like structure formation even in the absence of microcarrier beads, where increasing amounts of ASCs resulted in a denser tubular network. Our data add new insights into co-culture-induced vessel formation of outgrowth endothelial cells within a fibrin matrix in an autologous system.


Subject(s)
Adipocytes/cytology , Adipose Tissue/cytology , Endothelial Cells/cytology , Fibrin/chemistry , Stem Cells/cytology , Cell Culture Techniques , Coculture Techniques/methods , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Human Umbilical Vein Endothelial Cells , Humans , Leukocytes, Mononuclear/cytology , Matrix Metalloproteinase 14/metabolism , Microscopy, Fluorescence , Neovascularization, Pathologic , Tissue Engineering/methods
3.
Article in English | MEDLINE | ID: mdl-25453032

ABSTRACT

The use of cell-laden hydrogels to engineer soft tissue has been emerging within the past years. Despite, several newly developed and sophisticated techniques to encapsulate different cell types the importance of vascularization of the engineered constructs is often underestimated. As a result, cell death within a construct leads to impaired function and inclusion of the implant. Here, we discuss the fabrication of hollow channels within hydrogels as a promising strategy to facilitate vascularization. Furthermore, we present an overview on the feasible use of removable spacers, 3D laser-, and planar processing strategies to create channels within hydrogels. The implementation of these structures promotes control over cell distribution and increases oxygen transport and nutrient supply in vitro. However, many studies lack the use of endothelial cells in their approaches leaving out an important factor to enhance vessel ingrowth and anastomosis formation upon implantation. In addition, the adequate endothelial cell type needs to be considered to make these approaches bridge the gap to in vivo applications.

SELECTION OF CITATIONS
SEARCH DETAIL