Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Lancet Glob Health ; 4(8): e534-47, 2016 08.
Article in English | MEDLINE | ID: mdl-27364568

ABSTRACT

BACKGROUND: The introduction of the inactivated poliovirus vaccine (IPV) represents a crucial step in the polio eradication endgame. This trial examined the safety and immunogenicity of IPV given alongside the measles-rubella and yellow fever vaccines at 9 months and when given as a full or fractional dose using needle and syringe or disposable-syringe jet injector. METHODS: We did a phase 4, randomised, non-inferiority trial at three periurban government clinics in west Gambia. Infants aged 9-10 months who had already received oral poliovirus vaccine were randomly assigned to receive the IPV, measles-rubella, and yellow fever vaccines, singularly or in combination. Separately, IPV was given as a full intramuscular or fractional intradermal dose by needle and syringe or disposable-syringe jet injector at a second visit. The primary outcomes were seroprevalence rates for poliovirus 4-6 weeks post-vaccination and the rate of seroconversion between baseline and post-vaccination serum samples for measles, rubella, and yellow fever; and the post-vaccination antibody titres generated against each component of the vaccines. We did a per-protocol analysis with a non-inferiority margin of 10% for poliovirus seroprevalence and measles, rubella, and yellow fever seroconversion, and (1/3) log2 for log2-transformed antibody titres. This trial is registered with ClinicalTrials.gov, number NCT01847872. FINDINGS: Between July 10, 2013, and May 8, 2014, we assessed 1662 infants for eligibility, of whom 1504 were enrolled into one of seven groups for vaccine interference and one of four groups for fractional dosing and alternative route of administration. The rubella and yellow fever antibody titres were reduced by co-administration but the seroconversion rates achieved non-inferiority in both cases (rubella, -4·5% [95% CI -9·5 to -0·1]; yellow fever, 1·2% [-2·9 to 5·5]). Measles and poliovirus responses were unaffected (measles, 6·8% [95% CI -1·4 to 14·9]; poliovirus serotype 1, 1·6% [-6·7 to 4·7]; serotype 2, 0·0% [-2·1 to 2·1]; serotype 3, 0·0% [-3·8 to 3·9]). Poliovirus seroprevalence was universally high (>97%) after vaccination, but the antibody titres generated by fractional intradermal doses of IPV did not achieve non-inferiority compared with full dose. The number of infants who seroconverted or had a four-fold rise in titres was also lower by the intradermal route. There were no safety concerns. INTERPRETATION: The data support the future co-administration of IPV, measles-rubella, and yellow fever vaccines within the Expanded Programme on Immunization schedule at 9 months. The administration of single fractional intradermal doses of IPV by needle and syringe or disposable-syringe jet injector compromises the immunity generated, although it results in a high post-vaccination poliovirus seroprevalence. FUNDING: Bill & Melinda Gates Foundation.


Subject(s)
Measles/prevention & control , Poliomyelitis/prevention & control , Poliovirus Vaccine, Inactivated/administration & dosage , Rubella/prevention & control , Seroepidemiologic Studies , Vaccines, Combined , Yellow Fever Vaccine/administration & dosage , Female , Gambia , Humans , Immunization Schedule , Infant , Injections/methods , Male , Poliovirus/immunology , Poliovirus Vaccine, Inactivated/immunology , Vaccination
2.
BMC Pregnancy Childbirth ; 15: 302, 2015 Nov 19.
Article in English | MEDLINE | ID: mdl-26585192

ABSTRACT

BACKGROUND: Neonatal deaths, estimated at approximately 4 million annually, now account for almost 40% of global mortality in children aged under-five. Bacterial sepsis is a leading cause of neonatal mortality. Assuming the mother is the main source for bacterial transmission to newborns, the primary objective of the trial is to determine the impact of one oral dose of azithromycin, given to women in labour, on the newborn's bacterial carriage in the nasopharynx. Secondary objectives include the impact of the intervention on bacterial colonization in the baby and the mother during the first month of life. METHODS/DESIGN: This is a Phase III, double -blind, placebo controlled randomized clinical trial in which 830 women in labour were randomized to either a single dose of 2 g oral azithromycin or placebo (ratio 1:1). The trial included pregnant women in labour aged 18 to 45 years attending study health centres in the Western Gambia. A post-natal check of the mother and baby was conducted at the health centre by study clinicians before discharge and 8-10 days after delivery. Home follow up visits were conducted daily during the first week and then weekly until week 8 after delivery. Vaginal swabs and breast milk samples were collected from the mothers, and the pathogens Streptococcus pneumoniae, Group B Streptococcus (GBS) and Staphylococcus aureus were isolated from the study samples. For bacterial isolates, susceptibility pattern to azithromycin was determined using disk diffusion and E-test. Eye swabs were collected from newborns with eye discharge during the follow up period, and Chlamydial infection was assessed using molecular methods. DISCUSSION: This is a proof-of-concept study to assess the impact of antibiotic preventive treatment of women during labour on bacterial infections in the newborn. If the trial confirms this hypothesis, the next step will be to assess the impact of this intervention on neonatal sepsis. The proposed intervention should be easily implementable in developing countries. TRIAL REGISTRATION: ClinicalTrials.gov Identifier--NCT01800942--First received: February 26, 2013.


Subject(s)
Anti-Bacterial Agents/administration & dosage , Azithromycin/administration & dosage , Infectious Disease Transmission, Vertical/prevention & control , Pregnancy Complications, Infectious/drug therapy , Streptococcal Infections/drug therapy , Adolescent , Adult , Delivery, Obstetric , Double-Blind Method , Female , Gambia , Humans , Infant , Infant, Newborn , Microbial Sensitivity Tests , Middle Aged , Milk, Human/microbiology , Nose/microbiology , Pregnancy , Staphylococcus aureus/isolation & purification , Streptococcal Infections/prevention & control , Streptococcus agalactiae/isolation & purification , Streptococcus pneumoniae/isolation & purification , Vagina/microbiology , Young Adult
3.
J Phys Chem B ; 119(47): 14905-24, 2015 Nov 25.
Article in English | MEDLINE | ID: mdl-26505493

ABSTRACT

Femtosecond transient-grating spectroscopy with heterodyne detection was employed to characterize the nonradiative decay pathway in ß-carotene from the S2 (1(1)Bu(+)) state to the S1 (2(1)Ag(-)) state in benzonitrile solution. The results indicate definitively that the S2 state populates an intermediate state, Sx, on an ultrafast time scale prior to nonradiative decay to the S1 state. Numerical simulations using the response function formalism and the multimode Brownian oscillator model were used to fit the absorption and dispersion components of the transient-grating signal with a common set of parameters for all of the relevant Feynman pathways, including double-quantum coherences. The requirement for inclusion of the Sx state in the nonradiative decay pathway is the observed fast rise time of the dispersion component, which is predominantly controlled by the decay of the stimulated emission signal from the optically prepared S2 state. The finding that the excited-state absorption spectrum from the Sx state is significantly red-shifted from that of S2 and S1 leads to a new assignment for the spectroscopic origin of the Sx state. Rather than assigning Sx to a discrete electronic state, such as the (1)Bu(-) state suggested in previous work, it is proposed that the Sx state corresponds to a transition-state-like structure on the S2 potential surface. In this hypothesis, the 12 fs time constant for the decay of the S2 state corresponds to a vibrational displacement of the C-C and C═C bond-length alternation coordinates of the conjugated polyene backbone from the optically prepared Franck-Condon structure to a potential energy barrier on the S2 surface that divides planar and torsionally displaced structures. The lifetime of the Sx state would be associated with a subsequent relaxation along torsional coordinates over a steep potential energy gradient toward a conical intersection with the S1 state. This hypothesis leads to the idea that twisted structures with intramolecular charge-transfer character along the S2 torsional gradient are active in excitation energy-transfer mechanisms to (bacterio)chlorophyll acceptors.


Subject(s)
Darkness , Quantum Theory , beta Carotene/chemistry
4.
J Phys Chem B ; 119(23): 6905-15, 2015 Jun 11.
Article in English | MEDLINE | ID: mdl-25990194

ABSTRACT

Femtosecond pump-continuum probe spectroscopy with impulsive excitation was employed to observe coherent wavepacket motions of the cyanine dye Cy5 in water that promote photoisomerization after optical preparation of the first excited singlet state, S1. The chief component in the excited-state vibrational coherence is a resonance Raman-inactive, 273 cm(-1) mode of mixed carbon-carbon bond length alternation and out-of-plane or twisting character. The ultrafast (30 fs) damping of these motions arises from trajectories that irreversibly cross the transition state barrier; after several recurrences to the transition state region, vibrational cooling traps a significant fraction of the excited-state molecules in the planar, Franck-Condon region of the potential energy surface. Motion in the 273 cm(-1) promoting mode is apparently launched by a change in conformation of the conjugated polyene backbone during the first few vibrations of the high-frequency C-C and C═C bond length alternation coordinates that principally contribute to the initial displacement from the Franck-Condon structure. To our knowledge, this work provides the first direct observations of the intramolecular redistribution of excited-state potential energy into reactive motions that are rapidly damped by transition state barrier-crossing events leading to photoisomerization in a conjugated polyene. These results provide insight into the vibrational dynamics that contribute to the photoisomerization of retinal protonated Schiff bases in the rhodopsins and to the formation of intramolecular charge transfer character in carotenoids in photosynthetic light-harvesting proteins.

5.
J Phys Chem B ; 117(47): 14589-98, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24237324

ABSTRACT

The fluorescence Stokes shift (FSS) response of Zn(II)-substituted cytochrome c (ZnCytc) is transformed from a monotonic red-shifting response in water to a bidirectional response with much slower time constants in the presence of low concentrations of guanidinium (Gdm(+)) ions. The FSS response in water observed over the 100 ps to 10 ns range has two exponential components with time constants of 135 ps and 1.6 ns that account for a total shift of 30 cm(-1), about one-half of the solvation reorganization energy. In contrast, in the presence of only 0.25 M Gdm(+), the FSS response initially shifts 21 cm(-1) to the blue with a 820 ps time constant and then shifts 60 cm(-1) back to the red with a 3.5 ns time constant. The effect of Gdm(+) on the FSS response effectively saturates at 1.0 M, well below the 1.75 M midpoint of the two-state unfolding transition. These results establish that the FSS response in ZnCytc includes a significant contribution from the surrounding hydration shell, which assumes a perturbed hydrogen-bonding network owing to the binding of Gdm(+) ions to the protein surface. The blue-shifting part of the FSS response arises from a light-induced conformational change that expands the protein- and solvent-derived cavity around the excited-state Zn(II) porphyrin. This non-polar part of the solvation response is enhanced in the presence of Gdm(+) because the protein/solvent surroundings of the Zn(II) porphyrin are effectively more flexible than in water. The enhanced flexibility in the presence of Gdm(+) increases the amplitudes and accordingly lengthens the correlation time scales for the protein and hydration-shell fluctuations that contribute to the FSS response.


Subject(s)
Cytochromes c/chemistry , Guanidine/chemistry , Zinc/chemistry , Animals , Horses , Hydrogen Bonding , Ions/chemistry , Models, Molecular , Protein Conformation , Spectrometry, Fluorescence
6.
PLoS One ; 8(3): e57726, 2013.
Article in English | MEDLINE | ID: mdl-23526949

ABSTRACT

BACKGROUND: Heterologous prime boost immunization with chimpanzee adenovirus 63 (ChAd63) and Modified vaccinia Virus Ankara (MVA) vectored vaccines is a strategy recently shown to be capable of inducing strong cell mediated responses against several antigens from the malaria parasite. ChAd63-MVA expressing the Plasmodium falciparum pre-erythrocytic antigen ME-TRAP (multiple epitope string with thrombospondin-related adhesion protein) is a leading malaria vaccine candidate, capable of inducing sterile protection in malaria naïve adults following controlled human malaria infection (CHMI). METHODOLOGY: We conducted two Phase Ib dose escalation clinical trials assessing the safety and immunogenicity of ChAd63-MVA ME-TRAP in 46 healthy malaria exposed adults in two African countries with similar malaria transmission patterns. RESULTS: ChAd63-MVA ME-TRAP was shown to be safe and immunogenic, inducing high-level T cell responses (median >1300 SFU/million PBMC). CONCLUSIONS: ChAd63-MVA ME-TRAP is a safe and highly immunogenic vaccine regimen in adults with prior exposure to malaria. Further clinical trials to assess safety and immunogenicity in children and infants and protective efficacy in the field are now warranted. TRIAL REGISTRATION: Pactr.org PACTR2010020001771828 Pactr.org PACTR201008000221638 ClinicalTrials.gov NCT01373879 NCT01373879 ClinicalTrials.gov NCT01379430 NCT01379430.


Subject(s)
Malaria Vaccines/administration & dosage , Plasmodium falciparum/immunology , Adenoviruses, Simian/genetics , Adult , Antigens, Protozoan/genetics , Gambia , Genetic Vectors , Humans , Immunization, Secondary , Interferon-gamma/blood , Kenya , Malaria Vaccines/genetics , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Male , Middle Aged , Plasmodium falciparum/genetics , T-Lymphocytes/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Vaccinia virus/genetics , Young Adult
7.
Trials ; 12: 147, 2011 Jun 10.
Article in English | MEDLINE | ID: mdl-21663656

ABSTRACT

BACKGROUND: Recently, there has been mounting interest in scaling-up vector control against malaria in Africa. It needs to be determined if indoor residual spraying (IRS with DDT) will provide significant marginal protection against malaria over current best practice of long-lasting insecticidal nets (LLINs) and prompt treatment in a controlled trial, given that DDT is currently the most persistent insecticide for IRS. METHODS: A 2 armed cluster-randomised controlled trial will be conducted to assess whether DDT IRS and LLINs combined provide better protection against clinical malaria in children than LLINs alone in rural Gambia. Each cluster will be a village, or a group of small adjacent villages; all clusters will receive LLINs and half will receive IRS in addition. Study children, aged 6 months to 13 years, will be enrolled from all clusters and followed for clinical malaria using passive case detection to estimate malaria incidence for 2 malaria transmission seasons in 2010 and 2011. This will be the primary endpoint. Exposure to malaria parasites will be assessed using light and exit traps followed by detection of Anopheles gambiae species and sporozoite infection. Study children will be surveyed at the end of each transmission season to estimate the prevalence of Plasmodium falciparum infection and the prevalence of anaemia. DISCUSSION: Practical issues concerning intervention implementation, as well as the potential benefits and risks of the study, are discussed. TRIAL REGISTRATION: ISRCTN01738840 - Spraying And Nets Towards malaria Elimination (SANTE).


Subject(s)
Cluster Analysis , DDT , Insecticide-Treated Bednets , Insecticides , Malaria, Falciparum/prevention & control , Mosquito Control/methods , Randomized Controlled Trials as Topic , Rural Health Services , Adolescent , Aerosols , Benchmarking , Child , Child, Preschool , DDT/adverse effects , Gambia/epidemiology , Humans , Incidence , Infant , Insecticides/adverse effects , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Malaria, Falciparum/transmission , Practice Guidelines as Topic , Seasons
SELECTION OF CITATIONS
SEARCH DETAIL
...