Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 13(11)2021 Jun 03.
Article in English | MEDLINE | ID: mdl-34205020

ABSTRACT

Chimeric antigen receptor (CAR)-T cell therapy has revolutionized treatment of relapsed/refractory non-Hodgkin lymphoma (NHL). However, since 36-60% of patients relapse, early response prediction is crucial. We present a novel population quantitative systems pharmacology model, integrating literature knowledge on physiology, immunology, and adoptive cell therapy together with 133 CAR-T cell phenotype, 1943 cytokine, and 48 metabolic tumor measurements. The model well described post-infusion concentrations of four CAR-T cell phenotypes and CD19+ metabolic tumor volume over 3 months after CAR-T cell infusion. Leveraging the model, we identified a low expansion subpopulation with significantly lower CAR-T cell expansion capacities amongst 19 NHL patients. Together with two patient-/therapy-related factors (autologous stem cell transplantation, CD4+/CD8+ T cells), the low expansion subpopulation explained 2/3 of the interindividual variability in the CAR-T cell expansion capacities. Moreover, the low expansion subpopulation had poor prognosis as only 1/4 of the low expansion subpopulation compared to 2/3 of the reference population were still alive after 24 months. We translated the expansion capacities into a clinical composite score (CCS) of 'Maximum naïve CAR-T cell concentrations/Baseline tumor burden' ratio and propose a CCSTN-value > 0.00136 (cells·µL-1·mL-1 as predictor for survival. Once validated in a larger cohort, the model will foster refining survival prediction and solutions to enhance NHL CAR-T cell therapy response.

2.
Cancers (Basel) ; 13(10)2021 May 18.
Article in English | MEDLINE | ID: mdl-34069810

ABSTRACT

Tamoxifen is used worldwide to treat estrogen receptor-positive breast cancer. It is extensively metabolized, and minimum steady-state concentrations of its metabolite endoxifen (CSS,min ENDX) >5.97 ng/mL have been associated with favorable outcome. Endoxifen formation is mediated by the enzyme CYP2D6, and impaired CYP2D6 function has been associated with lower CSS,min ENDX. In the Women's Healthy Eating and Living (WHEL) study proposing the target concentration, 20% of patients showed subtarget CSS,min ENDX at tamoxifen standard dosing. CYP2D6 allele frequencies vary largely between populations, and as 87% of the patients in the WHEL study were White, little is known about the risk for subtarget CSS,min ENDX in other populations. Applying pharmacokinetic simulations, this study investigated the risk for subtarget CSS,min ENDX at tamoxifen standard dosing and the need for dose individualization in nine different biogeographical groups with distinct CYP2D6 allele frequencies. The high variability in CYP2D6 allele frequencies amongst the biogeographical groups resulted in an up to three-fold difference in the percentages of patients with subtarget CSS,min ENDX. Based on their CYP2D6 allele frequencies, East Asian breast cancer patients were identified as the population for which personalized, model-informed precision dosing would be most beneficial (28% of patients with subtarget CSS,min ENDX).

3.
Arch Toxicol ; 95(8): 2867-2870, 2021 08.
Article in English | MEDLINE | ID: mdl-34027562

ABSTRACT

The indole alkaloid yohimbine is an alpha-2 receptor antagonist used for its sympathomimetic effects. Several cases of yohimbine intoxication have been reported and the most recent one involved four individuals taking a yohimbine-containing drug powder. All individuals developed severe intoxication symptoms and were admitted to the hospital. Even though all individuals were assumed to have taken the same dose of the drug powder, toxicology analyses revealed yohimbine blood concentrations of 249-5631 ng/mL, amounting to a 22-fold difference. The reason for this high variability remained to be elucidated. We used recently reported knowledge on the metabolism of yohimbine together with state-of-the art nonlinear mixed-effects modelling and simulation and show that a patient's cytochrome P450 2D6 (CYP2D6) phenotype can explain the large differences observed in the measured concentration after intake of the same yohimbine dose. Our findings can be used both for the identification of safe doses in therapeutic use of yohimbine and for an explanation of individual cases of overdosing.


Subject(s)
Adrenergic alpha-2 Receptor Antagonists/poisoning , Cytochrome P-450 CYP2D6/metabolism , Yohimbine/poisoning , Adrenergic alpha-2 Receptor Antagonists/administration & dosage , Adrenergic alpha-2 Receptor Antagonists/pharmacokinetics , Computer Simulation , Humans , Models, Biological , Nonlinear Dynamics , Phenotype , Yohimbine/administration & dosage , Yohimbine/pharmacokinetics
4.
Pharmaceuticals (Basel) ; 14(2)2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33546125

ABSTRACT

Tamoxifen is widely used in breast cancer treatment and minimum steady-state concentrations of its active metabolite endoxifen (CSS,min ENDX) above 5.97 ng/mL have been associated with favourable disease outcome. Yet, about 20% of patients do not reach target CSS,min ENDX applying conventional tamoxifen dosing. Moreover, 4-75% of patients are non-adherent, resulting in worse disease outcomes. Assuming complete adherence, we previously showed model-informed precision dosing (MIPD) to be superior to conventional and CYP2D6-guided dosing in minimising the proportion of patients with subtarget CSS,min ENDX. Given the high non-adherence rate in long-term tamoxifen therapy, this study investigated the impact of non-adherence on CSS,min ENDX target attainment in different dosing strategies. We show that MIPD allows to account for the expected level of non-adherence (here: up to 2 missed doses/week): increasing the MIPD target threshold from 5.97 ng/mL to 9 ng/mL (the lowest reported CSS,min ENDX in CYP2D6 normal metabolisers) as a safeguard resulted in the lowest interindividual variability and proportion of patients with subtarget CSS,min ENDX even in non-adherent patients. This is a significant improvement to conventional and CYP2D6-guided dosing. Adding a fixed increment to the originally selected dose is not recommended, since it inflates interindividual variability.

6.
Eur J Clin Pharmacol ; 77(4): 441-464, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33165648

ABSTRACT

PURPOSE: This review provides an overview of the current challenges in oral targeted antineoplastic drug (OAD) dosing and outlines the unexploited value of therapeutic drug monitoring (TDM). Factors influencing the pharmacokinetic exposure in OAD therapy are depicted together with an overview of different TDM approaches. Finally, current evidence for TDM for all approved OADs is reviewed. METHODS: A comprehensive literature search (covering literature published until April 2020), including primary and secondary scientific literature on pharmacokinetics and dose individualisation strategies for OADs, together with US FDA Clinical Pharmacology and Biopharmaceutics Reviews and the Committee for Medicinal Products for Human Use European Public Assessment Reports was conducted. RESULTS: OADs are highly potent drugs, which have substantially changed treatment options for cancer patients. Nevertheless, high pharmacokinetic variability and low treatment adherence are risk factors for treatment failure. TDM is a powerful tool to individualise drug dosing, ensure drug concentrations within the therapeutic window and increase treatment success rates. After reviewing the literature for 71 approved OADs, we show that exposure-response and/or exposure-toxicity relationships have been established for the majority. Moreover, TDM has been proven to be feasible for individualised dosing of abiraterone, everolimus, imatinib, pazopanib, sunitinib and tamoxifen in prospective studies. There is a lack of experience in how to best implement TDM as part of clinical routine in OAD cancer therapy. CONCLUSION: Sub-therapeutic concentrations and severe adverse events are current challenges in OAD treatment, which can both be addressed by the application of TDM-guided dosing, ensuring concentrations within the therapeutic window.


Subject(s)
Antineoplastic Agents/therapeutic use , Drug Monitoring , Administration, Oral , Antineoplastic Agents/pharmacokinetics , Humans
8.
Clin Pharmacol Ther ; 108(3): 661-670, 2020 09.
Article in English | MEDLINE | ID: mdl-32578187

ABSTRACT

Endoxifen is one of the most important metabolites of the prodrug tamoxifen. High interindividual variability in endoxifen steady-state concentrations (CSS,min ENDX ) is observed under tamoxifen standard dosing and patients with breast cancer who do not reach endoxifen concentrations above a proposed therapeutic threshold of 5.97 ng/mL may be at a 26% higher recurrence risk compared with patients with endoxifen concentrations exceeding this value. In this investigation, 10 clinical tamoxifen studies were pooled (1,388 patients) to investigate influential factors on CSS,min ENDX using nonlinear mixed-effects modeling. Age and body weight were found to significantly impact CSS,min ENDX in addition to CYP2D6 phenotype. Compared with postmenopausal patients, premenopausal patients had a 30% higher risk for subtarget CSS,min ENDX at tamoxifen 20 mg per day. In treatment simulations for distinct patient subpopulations, young overweight patients had a 3.1-13.8-fold higher risk for subtarget CSS,min ENDX compared with elderly low-weight patients. Considering ever-rising obesity rates and the clinical importance of tamoxifen for premenopausal patients, this subpopulation may benefit most from individualized tamoxifen dosing.


Subject(s)
Antineoplastic Agents, Hormonal/pharmacokinetics , Breast Neoplasms/drug therapy , Models, Theoretical , Obesity/complications , Tamoxifen/analogs & derivatives , Adult , Age Factors , Aged , Aged, 80 and over , Antineoplastic Agents, Hormonal/administration & dosage , Antineoplastic Agents, Hormonal/blood , Body Weight , Breast Neoplasms/blood , Breast Neoplasms/complications , Computer Simulation , Cytochrome P-450 CYP2D6/genetics , Cytochrome P-450 CYP2D6/metabolism , Female , Humans , Middle Aged , Obesity/blood , Pharmacogenomic Variants , Tamoxifen/administration & dosage , Tamoxifen/blood , Tamoxifen/pharmacokinetics , Young Adult
9.
Front Pharmacol ; 11: 283, 2020.
Article in English | MEDLINE | ID: mdl-32296331

ABSTRACT

INTRODUCTION: At tamoxifen standard dosing, ∼20% of breast cancer patients do not reach proposed target endoxifen concentrations >5.97 ng/mL. Thus, better understanding the large interindividual variability in tamoxifen pharmacokinetics (PK) is crucial. By applying non-linear mixed-effects (NLME) modeling to a pooled 'real-world' clinical PK database, we aimed to (i) dissect several levels of variability and identify factors predictive for endoxifen exposure and (ii) assess different tamoxifen dosing strategies for their potential to increase the number of patients reaching target endoxifen concentrations. METHODS: Tamoxifen and endoxifen concentrations with genetic and demographic data of 468 breast cancer patients from six reported studies were used to develop a NLME parent-metabolite PK model. Different levels of variability on model parameters or measurements were investigated and the impact of covariates thereupon explored. The model was subsequently applied in a simulation-based comparison of three dosing strategies with increasing degree of dose individualization for a large virtual breast cancer population. Interindividual variability of endoxifen concentrations and the fraction of patients at risk for not reaching target concentrations were assessed for each dosing strategy. RESULTS AND CONCLUSIONS: The integrated NLME model enabled to differentiate and quantify four levels of variability (interstudy, interindividual, interoccasion, and intraindividual). Strong influential factors, i.e., CYP2D6 activity score, drug-drug interactions with CYP3A and CYP2D6 inducers/inhibitors and age, were reliably identified, reducing interoccasion variability to <20% CV. Yet, unexplained interindividual variability in endoxifen formation remained large (47.2% CV). Hence, therapeutic drug monitoring seems promising for achieving endoxifen target concentrations. Three tamoxifen dosing strategies [standard dosing (20 mg QD), CYP2D6-guided dosing (20, 40, and 60 mg QD) and individual model-informed precision dosing (MIPD)] using three therapeutic drug monitoring samples (5-120 mg QD) were compared, leveraging the model. The proportion of patients at risk for not reaching target concentrations was 22.2% in standard dosing, 16.0% in CYP2D6-guided dosing and 7.19% in MIPD. While in CYP2D6-guided- and standard dosing interindividual variability in endoxifen concentrations was high (64.0% CV and 68.1% CV, respectively), it was considerably reduced in MIPD (24.0% CV). Hence, MIPD demonstrated to be the most promising strategy for achieving target endoxifen concentrations.

SELECTION OF CITATIONS
SEARCH DETAIL