Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
J Biochem Mol Toxicol ; 38(6): e23738, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38764152

ABSTRACT

Ulcerative colitis (UC) is a chronic problem of the intestine and relapsing in nature. Biochanin A is a nature-derived isoflavonoid and has numerous bioactivities. However, its role against UC and intestinal inflammation remains obscure. We aimed to comprehensively explore the pharmacological effect of biochanin A in alleviating colitis and to evaluate the potential mechanisms. Initially, we explored the anti-inflammatory action of biochanin A (15, 30, and 60 µM) by employing lipopolysaccharide (LPS)-activated RAW 264.7 cells. In RAW 264.7 cells under LPS stimulation, biochanin A inhibited the elevation of reactive oxygen species (ROS) (p < 0.0001), interleukin (IL)-1ß (p < 0.0001), IL-18 (p < 0.01), and tumor necrosis factor (TNF)-α (p < 0.01) release, nitrite production (p < 0.0001), and the expression of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) proteins. Next, we studied the effectiveness of biochanin A (20 and 40 mg/kg) in mouse colitis induced with dextran sulfate sodium (DSS) by assessing colon length, disease activity index (DAI) scoring, and performing colonoscopy and histological analysis. The pro-inflammatory cytokines were estimated using ELISA. Western blot studies were performed to assess underlying mechanisms. In mice, biochanin A treatment alleviated DAI score (p < 0.0001), restored colon length (p < 0.05) and morphology, and re-established colon histopathology. Biochanin A affects the phosphorylation of proteins associated with NF-κB (p65) and mitogen-activated protein kinase (MAPK) axis and regulates colonic inflammation by reducing the expression of inflammatory cytokines and myeloperoxidase (MPO) activity. Altogether, our findings support the idea that the anticolitis potential of biochanin A is allied with anti-inflammatory activity by inhibiting the MAPK/NF-κB (p65) axis. Hence, biochanin A may be an alternative option to alleviate the risk of colitis.


Subject(s)
Colitis, Ulcerative , Genistein , Transcription Factor RelA , Animals , Genistein/pharmacology , Mice , RAW 264.7 Cells , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colitis, Ulcerative/pathology , Transcription Factor RelA/metabolism , Male , MAP Kinase Signaling System/drug effects , Mitogen-Activated Protein Kinases/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Dextran Sulfate/toxicity
2.
Basic Res Cardiol ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771318

ABSTRACT

Chronic kidney disease (CKD) adversely affects the heart. The underlying mechanism and the interplay between the kidney and the heart are still obscure. We examined the cardiac effect using the unilateral ureteral obstruction (UUO)-induced CKD pre-clinical model in mice. Echocardiography, histopathology of the heart, myocardial mRNA expression of ANP and BNP, the extent of fibrotic (TGF-ß, α-SMA, and collagen I) and epigenetic (histone deacetylases, namely HDAC3, HDAC4, and HDAC6) proteins, and myocardial inflammatory response were assessed. Six weeks of post-UUO surgery, we observed a compromised left-ventricular wall thickness and signs of cardiac hypertrophy, accumulation of fibrosis associated, and inflammatory proteins in the heart. In addition, we observed a perturbation of epigenetic proteins, especially HDAC3, HDAC4, and HDAC6, in the heart. Pharmacological inhibition of HDAC6 using ricolinostat (RIC) lessened cardiac damage and improved left-ventricular wall thickness. The RIC treatment substantially restored the serum cardiac injury markers, namely creatine kinase-MB and lactate dehydrogenase (LDH) activities, ANP and BNP mRNA expression, and heart histological changes. The extent of myocardial fibrotic proteins, phospho-NF-κB (p65), and pro-inflammatory cytokines (TNF-α, IL-18, and IL-1ß) were significantly decreased in the RIC treatment group. Further findings revealed the CKD-induced infiltration of CD3, CD8a, CD11c, and F4/80 positive inflammatory cells in the heart. Treatment with RIC substantially reduced the myocardial infiltration of these inflammatory cells. From these findings, we believe that CKD-induced myocardial HDAC6 perturbation has a deteriorative effect on the heart, and inhibition of HDAC6 can be a promising approach to alleviate CKD-induced myocardial remodeling.

3.
Microbes Infect ; : 105333, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38570086

ABSTRACT

Cerebral malaria (CM) induced by Plasmodium falciparum is a devastating neurological complication that may lead the patient to coma and death. This study aimed to protect Plasmodium-infected C57BL6 mice from CM by targeting the angiotensin II type 1 (AT1) receptor, which is considered the common connecting link between hypertension and CM. In CM, AT-1 mediates blood-brain barrier (BBB) damage through the overexpression of ß-catenin. The AT-1-inhibiting drugs, such as irbesartan and losartan, were evaluated for the prevention of CM. The effectiveness of these drugs was determined by the down regulation of ß-catenin, TCF, LEF, ICAM-1, and VCAM-1 in the drug-treated groups. The expression levels of VE-cadherin and vinculin, essential for the maintenance of BBB integrity, were found to be restored in the drug-treated groups. The pro-inflammatory cytokine levels were decreased, and the anti-inflammatory cytokine levels increased with the treatment. As a major highlight, the mean survival time of treated mice was found to be increased even in the absence of treatment with an anti-malarial agent. The combination of irbesartan or losartan with the anti-malarial agent α/ß-arteether has contributed to an 80% cure rate, which is higher than the 60% cure rate observed with α/ß-arteether alone treatment.

4.
Article in English | MEDLINE | ID: mdl-38603587

ABSTRACT

Purpose: Glaucoma is a complex degenerative optic neuropathy characterized by loss of retinal ganglion cells (RGCs) leading to irreversible vision loss and blindness. Solanum nigrum has been used for decades in traditional medicine system. However, no extensive studies were reported on its antiglaucoma properties. Therefore, this study was designed to investigate the neuroprotective effects of S. nigrum extract on RGC against glaucoma rat model. Methods: High performance liquid chromatography and liquid chromatography tandem mass spectrometry was used to analyze the phytochemical profile of aqueous extract of S. nigrum (AESN). In vitro, {3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide} (MTT) and H2DCFDA assays were used to determine cell viability and reactive oxygen species (ROS) production in Statens Seruminstitut Rabbit Cornea cells. In vivo, AESN was orally administered to carbomer-induced rats for 4 weeks. Intraocular pressure, antioxidant levels, and electrolytes were determined. Histopathological and immunohistochemical analysis was carried out to evaluate the neurodegeneration of RGC. Results: MTT assay showed AESN exhibited greater cell viability and minimal ROS production at 10 µg/mL. Slit lamp and funduscopy confirmed glaucomatous changes in carbomer-induced rats. Administration of AESN showed minimal peripheral corneal vascularization and restored histopathological alterations such as minimal loss of corneal epithelium and moderate narrowing of the iridocorneal angle. Immunohistochemistry analysis showed increased expression of positive BRN3A cells and decreased matrix metalloproteinase (MMP)-9 activation in retina and cornea, whereas western blot analysis revealed downregulation of extracellular matrix proteins (COL-1 and MMP-9) in AESN-treated rats compared with the diseased group rats. Conclusions: AESN protects RGC loss through remodeling of MMPs and, therefore, can be used for the development of novel neurotherapeutics for the treatment of glaucoma.

5.
Article in English | MEDLINE | ID: mdl-38654153

ABSTRACT

Ocular disorders can lead to serious sight impairment and irreversible blindness. Generally simple topical and systemic treatments are recommended for treating these vision-threatening illnesses. The distinctive architecture of the eye complicates ocular drug delivery. The ophthalmic emulsion formulations have been found to increase bioavailability in the eye by prolonging residence time and improving permeability through the cornea. Therefore, this study highlights ophthalmic emulsions meant for both the anterior and posterior parts of the eye while examining a wide range of ocular disorders that affect individuals globally. This review presents, in brief, recent emulsion-based patented innovations, clinical trials, and marketed emulsion formulations for ocular drug delivery, which are strengthening development of the new ophthalmic drug products for managing different ocular diseases and disorders.

6.
Free Radic Biol Med ; 219: 184-194, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38636716

ABSTRACT

Hematopoietic stem cells (HSCs) replenish blood cells under steady state and on demand, that exhibit therapeutic potential for Bone marrow failures and leukemia. Redox signaling plays key role in immune cells and hematopoiesis. However, the role of reactive nitrogen species in hematopoiesis remains unclear and requires further investigation. We investigated the significance of inducible nitric oxide synthase/nitric oxide (iNOS/NO) signaling in hematopoietic stem and progenitor cells (HSPCs) and hematopoiesis under steady-state and stress conditions. HSCs contain low levels of NO and iNOS under normal conditions, but these increase upon bone marrow stress. iNOS-deficient mice showed subtle changes in peripheral blood cells but significant alterations in HSPCs, including increased HSCs and multipotent progenitors. Surprisingly, iNOS-deficient mice displayed heightened susceptibility and delayed recovery of blood progeny following 5-Fluorouracil (5-FU) induced hematopoietic stress. Loss of quiescence and increased mitochondrial stress, indicated by elevated MitoSOX and MMPhi HSCs, were observed in iNOS-deficient mice. Furthermore, pharmacological approaches to mitigate mitochondrial stress rescued 5-FU-induced HSC death. Conversely, iNOS-NO signaling was required for demand-driven mitochondrial activity and proliferation during hematopoietic recovery, as iNOS-deficient mice and NO signaling inhibitors exhibit reduced mitochondrial activity. In conclusion, our study challenges the conventional view of iNOS-derived NO as a cytotoxic molecule and highlights its intriguing role in HSPCs. Together, our findings provide insights into the crucial role of the iNOS-NO-mitochondrial axis in regulating HSPCs and hematopoiesis.


Subject(s)
Fluorouracil , Hematopoiesis , Hematopoietic Stem Cells , Mitochondria , Nitric Oxide Synthase Type II , Nitric Oxide , Signal Transduction , Animals , Nitric Oxide Synthase Type II/metabolism , Nitric Oxide Synthase Type II/genetics , Hematopoietic Stem Cells/metabolism , Mice , Mitochondria/metabolism , Fluorouracil/pharmacology , Hematopoiesis/genetics , Nitric Oxide/metabolism , Regeneration , Mice, Knockout , Bone Marrow/metabolism , Mice, Inbred C57BL
8.
Biochim Biophys Acta Mol Cell Res ; 1871(3): 119676, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38242330

ABSTRACT

Idiopathic pulmonary fibrosis (IPF) is a chronic and progressive lung disease characterized by excessive accumulation of extracellular matrix, leading to irreversible fibrosis. Emerging evidence suggests that endoplasmic reticulum (ER) stress, mitochondrial stress, and oxidative stress pathways play crucial roles in the pathogenesis of IPF. ER stress occurs when the protein folding capacity of the ER is overwhelmed, triggering the unfolded protein response (UPR) and contributing to protein misfolding and cellular stress in IPF. Concurrently, mitochondrial dysfunction involving dysregulation of key regulators, including PTEN-induced putative kinase 1 (PINK1), Parkin, peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), and sirtuin 3 (SIRT3), disrupts mitochondrial homeostasis and impairs cellular energy metabolism. This leads to increased reactive oxygen species (ROS) production, release of pro-fibrotic mediators, and activation of fibrotic pathways, exacerbating IPF progression. The UPR-induced ER stress further disrupts mitochondrial metabolism, resulting in altered mitochondrial mechanisms that increase the generation of ROS, resulting in further ER stress, creating a feedback loop that contributes to the progression of IPF. Oxidative stress also plays a pivotal role in IPF, as ROS-mediated activation of TGF-ß, NF-κB, and MAPK pathways promotes inflammation and fibrotic responses. This review mainly focuses on the links between ER stress, mitochondrial dysfunctions, and oxidative stress with different signaling pathways involved in IPF. Understanding these mechanisms and targeting key molecules within these pathways may offer promising avenues for intervention.


Subject(s)
Idiopathic Pulmonary Fibrosis , Oxidative Stress , Humans , Reactive Oxygen Species , Mitochondria , Inflammation
9.
Metabolism ; 152: 155771, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38184165

ABSTRACT

BACKGROUND: Hepatocellular carcinoma (HCC) continues to pose a significant health challenge and is often diagnosed at advanced stages. Metabolic reprogramming is a hallmark of many cancer types, including HCC and it involves alterations in various metabolic or nutrient-sensing pathways within liver cells to facilitate the rapid growth and progression of tumours. However, the role of STAT3-NFκB in metabolic reprogramming is still not clear. APPROACH AND RESULTS: Diethylnitrosamine (DEN) administered animals showed decreased body weight and elevated level of serum enzymes. Also, Transmission electron microscopy (TEM) analysis revealed ultrastructural alterations. Increased phosphorylated signal transducer and activator of transcription-3 (p-STAT3), phosphorylated nuclear factor kappa B (p-NFκß), dynamin related protein 1 (Drp-1) and alpha-fetoprotein (AFP) expression enhance the carcinogenicity as revealed in immunohistochemistry (IHC). The enzyme-linked immunosorbent assay (ELISA) concentration of IL-6 was found to be elevated in time dependent manner both in blood serum and liver tissue. Moreover, immunoblot analysis showed increased level of p-STAT3, p-NFκß and IL-6 stimulated the upregulation of mitophagy proteins such as Drp-1, Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK-1). Meanwhile, downregulation of Poly [ADP-ribose] polymerase 1 (PARP-1) and cleaved caspase 3 suppresses apoptosis and enhanced expression of AFP supports tumorigenesis. The mRNA level of STAT3 and Drp-1 was also found to be significantly increased. Furthermore, we performed high-field 800 MHz Nuclear Magnetic Resonance (NMR) based tissue and serum metabolomics analysis to identify metabolic signatures associated with the progression of liver cancer. The metabolomics findings revealed aberrant metabolic alterations in liver tissue and serum of 75th and 105th days of intervention groups in comparison to control, 15th and 45th days of intervention groups. Tissue metabolomics analysis revealed the accumulation of succinate in the liver tissue samples, whereas, serum metabolomics analysis revealed significantly decreased circulatory levels of ketone bodies (such as 3-hydroxybutyrate, acetate, acetone, etc.) and membrane metabolites suggesting activated ketolysis in advanced stages of liver cancer. CONCLUSION: STAT3-NFκß signaling axis has a significant role in mitochondrial dysfunction and metabolic alterations in the development of HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Mitochondrial Diseases , Signal Transduction , Animals , alpha-Fetoproteins/metabolism , Carcinoma, Hepatocellular/complications , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Interleukin-6/metabolism , Liver Neoplasms/complications , Liver Neoplasms/metabolism , Mitochondrial Diseases/etiology , Mitochondrial Diseases/metabolism , NF-kappa B/metabolism , STAT3 Transcription Factor/metabolism
10.
Eur J Pharmacol ; 963: 176250, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38092315

ABSTRACT

Diabetic nephropathy (DN) is a serious concern in patients with diabetes mellitus. Prolonged hyperglycemia induces oxidative damage, chronic inflammation, and build-up of extracellular matrix (ECM) components in the renal cells, leading to kidney structural and functional changes. Imperatorin (IMP) is a naturally occurring furanocoumarin derivative with proven antioxidative and anti-inflammatory properties. We investigated whether IMP could improve DN and employed high glucose (HG)-induced HK-2 cells and high-fat diet-fed streptozotocin (HFD/STZ)-generated DN experimental model in C57BL/6 mice. In vitro, IMP effectively reduced the HG-activated reactive oxygen species generation, disturbance in the mitochondrial membrane potential (MMP) and epithelial-to-mesenchymal transition (EMT)-related markers, and the transforming growth factor (TGF)-ß and collagen 1 expression in HK-2 cells. In vivo, we found an elevation of serum creatinine, kidney histology alterations, and collagen build-up in the kidneys of the DN control group. Also, we found an altered expression of EMT-related markers, upregulation of the TGF-ß/Smad2/3 axis, and elevated pro-inflammatory molecules, TNF-α, IL-1ß, IL-18 and phospho-NF-kB (p65) in the DN control group. IMP treatment did not significantly reduce the blood glucose level compared to the DN control group. However, IMP treatment effectively improved renal damage by ameliorating kidney histological changes and serum renal injury markers. IMP treatment restored renal antioxidants and exhibited anti-inflammatory effects in the kidneys. Moreover, the abnormal manifestation of EMT-related attributes and elevated levels of TGF-ß, phospho-Smad2/3, and collagen 1 were also normalized in the IMP treatment group. Our findings highlight that IMP may be a potential candidate for treating DN.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Nephritis , Animals , Humans , Mice , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/metabolism , Collagen/metabolism , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/pathology , Fibrosis , Inflammation/drug therapy , Inflammation/metabolism , Kidney , Mice, Inbred C57BL , Nephritis/pathology , Transforming Growth Factor beta/metabolism , Smad2 Protein/drug effects , Smad2 Protein/metabolism , Smad3 Protein/drug effects , Smad3 Protein/metabolism , Epithelial-Mesenchymal Transition/drug effects , Furocoumarins/pharmacology , Furocoumarins/therapeutic use
11.
Biomacromolecules ; 24(12): 5780-5796, 2023 12 11.
Article in English | MEDLINE | ID: mdl-38006339

ABSTRACT

In the current study, we aimed to develop lyotropic crystalline nanoconstructs (LCNs) based on poly(l-glutamic acid) (PLG) with a two-tier strategy. The first objective was to confer pH-responsive charge conversion properties to facilitate the delivery of both doxorubicin (DOX) and buparvaquone (BPQ) in combination (B + D@LCNs) to harness their synergistic effects. The second goal was to achieve targeted delivery to sigma receptors within the tumor tissues. To achieve this, we designed a pH-responsive charge conversion system using a polymer consisting of poly(ethylenimine), poly(l-lysine), and poly(l-glutamic acid) (PLG), which was then covalently coupled with methoxybenzamide (MBA) for potential sigma receptor targeting. The resulting B + D@LCNs were further modified by surface functionalization with PLG-MBA to confer both sigma receptor targeting and pH-responsive charge conversion properties. Our observations indicated that at physiological pH 7.4, P/B + D-MBA@LCNs exhibited a negative charge, while under acidic conditions (pH 5.5, characteristic of the tumor microenvironment), they acquired a positive charge. The particle size of P/B + D-MBA@LCNs was determined to be 168.23 ± 2.66 nm at pH 7.4 and 201.23 ± 1.46 nm at pH 5.5. The crystalline structure of the LCNs was confirmed through small-angle X-ray scattering (SAXS) diffraction patterns. Receptor-mediated endocytosis, facilitated by P/B + D-MBA@LCNs, was confirmed using confocal laser scanning microscopy and flow cytometry. The P/B + D-MBA@LCNs formulation demonstrated a higher rate of G2/M phase arrest (55.20%) compared to free B + D (37.50%) and induced mitochondrial depolarization (59.39%) to a greater extent than P/B + D@LCNs (45.66%). Pharmacokinetic analysis revealed significantly improved area under the curve (AUC) values for both DOX and BPQ when administered as P/B + D-MBA@LCNs, along with enhanced tumor localization. Tumor regression studies exhibited a substantial reduction in tumor size, with P/B + D-MBA@LCNs leading to 3.2- and 1.27-fold reductions compared to B + D and nontargeted P/B + D@LCNs groups, respectively. In summary, this two-tier strategy demonstrates substantial promise for the delivery of a drug combination through the prototype formulation. It offers a potential chemotherapeutic option by minimizing toxic effects on healthy cells while maximizing therapeutic efficacy.


Subject(s)
Breast Neoplasms , Nanoparticles , Receptors, sigma , Humans , Female , Breast Neoplasms/drug therapy , Glutamic Acid , Scattering, Small Angle , X-Ray Diffraction , Doxorubicin/chemistry , Hydrogen-Ion Concentration , Receptors, sigma/therapeutic use , Nanoparticles/chemistry , Drug Carriers/chemistry , Tumor Microenvironment
12.
Life Sci ; 331: 122064, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37657527

ABSTRACT

INTRODUCTION: Pulmonary fibrosis (PF) is characterized by an increase in collagen synthesis and deposition of extracellular matrix. Several factors, including transforming growth factor-ß1 (TGF-ß1), mothers against decapentaplegic homolog family proteins (Smad), and alpha-smooth muscle actin (α-SMA) trigger extracellular matrix (ECM) accumulation, fibroblast to myofibroblasts conversion, and epithelial-to-mesenchymal-transition (EMT) leading to PF. However, the role of cellular defense mechanisms such as the role of nuclear factor erythroid 2-related factor 2 (Nrf2) signaling during the onset and progression of PF is not understood completely. AIM: The present study aims to analyze the involvement of TGF-ß1/Smad signaling, and Nrf2 in the EMT and metabolic alterations that promote fibrosis in a time-dependent manner using bleomycin (BLM)-induced PF model in C57BL/6 mice. KEY FINDINGS: Histopathological studies revealed loss of lung architecture and increased collagen deposition in BLM-exposed mice. BLM upregulated TGF-ß1/Smad signaling and α-SMA at all time-points. The gradual increase in the accumulation of α-SMA and collagen implied the progression of PF. BLM exposure raises Nrf2 throughout each specified time-point, which suggests that Nrf2 activation might be responsible for TGF-ß1-induced EMT and the development of PF. Further, metabolomic studies linked the development of PF to alterations in metabolic pathways. The pentose phosphate pathway (PPP) was consistently enriched across all the time-points. Additionally, alterations in 22 commonly enriched pathways, associated with fatty acid (FA) and amino acid metabolism were observed in 30- and 60-days. SIGNIFICANCE: This study elucidates the association of TGF-ß1/Smad and Nrf2 signaling in the EMT and metabolic alterations associated with the etiology and progression of PF.


Subject(s)
Pulmonary Fibrosis , Animals , Mice , Mice, Inbred C57BL , Pulmonary Fibrosis/chemically induced , Transforming Growth Factor beta1 , NF-E2-Related Factor 2 , Bleomycin/toxicity
13.
Arch Biochem Biophys ; 745: 109701, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37499993

ABSTRACT

Hepatocellular carcinoma (HCC) is the leading cause of cancer-related death worldwide. Cytochrome P450 2E1 (CYP2E1) is an enzyme, primarily involved in the metabolism of xenobiotics and procarcinogens. The present study was designed to investigate the potential role of CYP2E1 triggered endoplasmic reticulum stress in the progression of HCC through inhibition of apoptosis. In vitro CYP2E1 promotes HepG2 cell migration, reduced chromatin condensation, enhanced intracellular ROS accumulation and induce cell cycle progression. Conversely this effect was averted by CYP2E1 siRNA, selective inhibitor Diallyl sulphide (DAS) and antioxidants (vitamin C and E). In vivo Diethylnitrosamine (DEN) induced HCC rats showed decreased body weight and increased relative liver weight. Moreover, macro trabecular-massive HCC (MTM-HCC) histological subtyping showed pathological features like well-differentiated tumors, micro-trabecular and pseudo glandular patterns, megakaryocytes and cholestasis. Masson's trichrome staining revealed an intensive accumulation of collagen fibers in the extracellular matrix (ECM). Increased CYP2E1, VEGF and PCNA enhance the carcinogenicity as revealed in immunohistochemistry results. Immunoblot analysis showed reduced expression of copper-zinc superoxide dismutase (CuZnSOD) and manganese superoxide dismutase (MnSOD) in cytosolic as well as mitochondrial fraction of rat liver tissue respectively. Also, increased level of CYP2E1 stimulated the upregulation of unfolded proteins response (UPR) and ER stress-related proteins such as Glucose regulatory protein 78 (GRP78), activating transcription factor 6 (ATF6) and CCAAT enhancer-binding protein (C/EBP) homologous protein (CHOP). Meanwhile, CYP2E1 stimulated ER-stress reduces BCL2 and downregulates the cleaved caspase 3 thus suppresses apoptosis. in. Furthermore, immunofluorescence revealed increased expression level of α-SMA in the HCC rat liver tissue. The level of CYP2E1 mRNA was significantly increased. Altogether, these findings indicate that CYP2E1 has a dynamic role in the pathogenesis of HCC and might be a budding agent in liver carcinogenesis therapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Rats , Activating Transcription Factor 6 , Apoptosis , Carcinoma, Hepatocellular/metabolism , Cytochrome P-450 CYP2E1/metabolism , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress , Heat-Shock Proteins/metabolism , Liver Neoplasms/metabolism , Transcription Factors , Transcription Factor CHOP , Humans
14.
Life Sci ; 325: 121751, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37169145

ABSTRACT

Hepatocellular carcinoma (HCC) is among the deadliest cancer in human malignancies. It is the most common and severe type of primary liver cancer. However, the molecular mechanisms underlying HCC pathogenesis remain poorly understood. Long non-coding RNAs (lncRNAs), a new kind of RNA and epigenetic factors, play a crucial role in tumorigenesis and the progression of HCC. LncRNAs are capable of promoting the autophagy, proliferation, and migration of tumor cells by targeting and modulating the expression of downstream genes in signaling pathways related to cancer; these transcripts modify the activity and expression of various tumor suppressors and oncogenes. LncRNAs could act as biomarkers for treatment approaches such as immunotherapy, chemotherapy, and surgery to effectively treat HCC patients. Improved knowledge regarding the aetiology of HCC may result from an advanced understanding of lncRNAs. Enhanced oxidative stress in the mitochondrial and Endoplasmic reticulum leads to the activation of unfolded protein response pathway that plays a crucial role in the pathophysiology of hepatocellular carcinoma. The mutual regulation between LncRNAs and Endoplasmic reticulum (ER) stress in cancer and simultaneous activation of the unfolded protein response (UPR) pathway determines the fate of tumor cells in HCC. Mitochondria-associated lncRNAs work as essential components of several gene regulatory networks; abnormal regulation of mitochondria-associated lncRNAs may lead to oncogenesis, which provides further insight into the understanding of tumorigenesis and therapeutic strategies.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , RNA, Long Noncoding , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Gene Expression Regulation, Neoplastic , Carcinogenesis/genetics , Cell Transformation, Neoplastic
15.
Antioxidants (Basel) ; 12(5)2023 May 05.
Article in English | MEDLINE | ID: mdl-37237918

ABSTRACT

Nephropathy is the most prevalent microvascular disorder in diabetes mellitus. Oxidative stress and inflammatory cascade provoked by the persistent hyperglycemic milieu play integral roles in the aggravation of renal injury and fibrosis. We explored the impact of biochanin A (BCA), an isoflavonoid, on the inflammatory response, nod-like receptor protein 3 (NLRP3) inflammasome activation, oxidative stress, and fibrosis in diabetic kidneys. A high-fat-diet/streptozotocin (HFD/STZ)-induced experimental model of diabetic nephropathy (DN) was established in Sprague Dawley rats, and in vitro studies were performed in high-glucose-induced renal tubular epithelial (NRK-52E) cells. Persistent hyperglycemia in diabetic rats was manifested by perturbation of renal function, marked histological alterations, and oxidative and inflammatory renal damage. Therapeutic intervention of BCA mitigated histological changes, improved renal function and antioxidant capacity, and suppressed phosphorylation of nuclear factor-kappa B (NF-κB) and nuclear factor-kappa B inhibitor alpha (IκBα) proteins. Our in vitro data reveal excessive superoxide generation, apoptosis, and altered mitochondrial membrane potential in NRK-52E cells that were cultured in a high-glucose (HG) environment were subsided by BCA intervention. Meanwhile, the upregulated expressions of NLRP3 and its associated proteins, the pyroptosis-indicative protein gasdermin-D (GSDMD) in the kidneys, and HG-stimulated NRK-52E cells were significantly ameliorated by BCA treatment. Additionally, BCA blunted transforming growth factor (TGF)-ß/Smad signaling and production of collagen I, collagen III, fibronectin, and alfa-smooth muscle actin (α-SMA) in diabetic kidneys. Our results indicate the plausible role of BCA in attenuating DN, presumably through modulation of the apoptotic cascade in renal tubular epithelial cells and the NF-κB/NLRP3 axis.

16.
Colloids Surf B Biointerfaces ; 226: 113316, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37086687

ABSTRACT

Chondroitin anchored crystalline nano-capsules bearing Imatinib (IMT), and simvastatin (SMV) was developed using Poly (L-lactic acid) (PLLA) by two-step method, i.e., firstly, by synthesizing chondroitin (CSA) anchored simvastatin (SMV) using cystamine as a spacer (SMV-SS-CSA) for disulfide triggered glutathione (GSH) sensitive release and secondly, by developing phenyl boronic ester grafted Pluronic F68 (PEPF) for H2O2 responsive release. By combining these conjugates, we have prepared crystalline nano-capsules (CNs) for preferential targeting of CD44 receptors. The developed CNs were spherical when characterized through SEM, TEM, and AFM for surface morphology, while changes in particle size and crystalline structure were confirmed through Quasi-Elastic light scattering (QELS) and Wide Angle X-ray Scattering (WAXS). The enhanced cellular uptake was noted in chondroitin-modified nano-capsules IMT/SMV-SS-CSA@CNs compared to unmodified nano-capsules IMT+SMV@CNs. IMT/SMV-SS-CSA@CNs displayed significantly higher G2/M phase arrest (76.9%) than unmodified nano-capsules. The prototype formulation (IMT/SMV-SS-CSA@CNs) showed an overall improved pharmacokinetic profile in terms of both half-life and AUC0-α. When tested in the 4T1 subcutaneously injected tumor-bearing Balb/c mice model, the tumor growth inhibition rate of IMT/SMV-SS-CSA@CNs was significantly higher (91%) than the IMT+SMV combination. Overall, the findings suggest that the proposed dual responsive chondroitin-modified drug delivery could have a step forward in achieving spatial and temporal targeting at the tumor site.


Subject(s)
Hydrogen Peroxide , Neoplasms , Animals , Mice , Imatinib Mesylate/pharmacology , Simvastatin , Chondroitin , Oxidation-Reduction
17.
Life Sci ; 324: 121743, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37120013

ABSTRACT

AIMS: Lipopolysaccharide (LPS) is a well-known agent to induce septic conditions. Sepsis-induced cardiomyopathy has an overwhelming death rate. Carvacrol (CVL), a monoterpene phenol, has anti-inflammatory and antioxidant properties. This research aimed to investigate the effect of CVL on LPS-induced dysfunction in the heart. In this study, we evaluated the effect of CVL in LPS-stimulated H9c2 cardiomyoblast cells and Balb/C mice. MAIN METHODS: LPS was used to induce septic conditions in H9c2 cardiomyoblast cells in vitro and in Balb/C mice. A survival study was conducted to assess the survival rate of mice after LPS and/or CVL treatment. KEY FINDINGS: In vitro studies indicated that CVL inhibits reactive oxygen species (ROS) generation and abates pyroptosis mediated by NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome in H9c2 cells. In mice, CVL intervention improved the survival rate in septic conditions. The CVL administration markedly improved the echocardiographic parameters and alleviated the LPS-induced reduction in the ejection fraction (%) and fraction shortening (%). The CVL intervention restored the myocardial antioxidants and histopathological alterations and decreased the pro-inflammatory cytokine contents in the heart. Further findings disclosed that CVL reduced the protein levels of NLRP3, apoptosis-associated speck-like protein (ASC), caspase 1, interleukin (IL)-18, IL-1ß, and the pyroptosis-indicative protein, gasdermin-D (GSDMD) in the heart. The autophagy-indicative proteins, beclin 1 and p62 in the heart were also restored in the CVL-treated group. SIGNIFICANCE: Altogether, our findings demonstrated that CVL has a beneficial effect and can be a potential molecule against sepsis-induced myocardial dysfunction.


Subject(s)
Heart Diseases , Sepsis , Mice , Animals , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Pyroptosis , Lipopolysaccharides/toxicity , Gasdermins , Inflammasomes/metabolism , Sepsis/complications , Sepsis/drug therapy
18.
Chem Biol Interact ; 373: 110373, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36736873

ABSTRACT

Lung cancer is an aggressive malignancy and the leading cause of cancer-related deaths. Benzo[a]pyrene (B[a]P), a polycyclic hydrocarbon, plays a pivotal role in lung carcinogenesis. Uncovering the molecular mechanism underlying the pathophysiology of B[a]P induced malignancy is crucial. Male Sprague Dawley rats were induced with B[a]P to generate a lung cancer model. The B[a]P administered rats show increased body and lung weight, loss of normal pulmonary architecture, and decreased survival. This study demonstrated that B[a]P upregulates activating transcription factor-6 (ATF6) and C/EBP Homologous Protein (CHOP) and induces endoplasmic reticulum (ER) stress. B[a]P also dysregulated mitochondrial homeostasis by upregulating, PTEN-induced putative kinase-1 (PINK1) and Parkin. B[a]P affected the levels of superoxide dismutase (SOD), reduced glutathione (GSH), malondialdehyde (MDA), and increased oxidative stress. B[a]P exposure downregulated Kelch-like ECH-associated protein 1 (Keap1) and upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) and Heme oxygenase-1(HO1). The metabolomic study identified that biosynthesis of nucleotide, amino acids, pentose phosphate pathway (PPP), tricarboxylic acid cycle (TCA), and glutathione metabolism were up-accumulated. On the other hand, lower accumulation of fatty acids e.g., palmitic acid, stearic acid, and oleic acid were reported in the B[a]P induced group. Overall, the results of this study indicate that B[a]P treatment affects several signaling and metabolic pathways, whose dysregulation might be involved in lung cancer induction.


Subject(s)
Lung Neoplasms , NF-E2-Related Factor 2 , Animals , Male , Rats , Benzo(a)pyrene , Kelch-Like ECH-Associated Protein 1/metabolism , Metabolome , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Rats, Sprague-Dawley
19.
J Ethnopharmacol ; 303: 115992, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36509261

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Alternanthera brasiliana L. is a flowering plant belonging to the family Amaranthaceae and is popularly known as "penicillin". It is used in folk medicine to treat infections, coughs, wound healing, and inflammatory diseases. AIM OF THE STUDY: We investigated the effect of Alternanthera brasiliana L. leaves hydroalcoholic extract (AB) against oxidative stress, inflammation, and fibrotic changes in an experimental model of carbon tetrachloride (CCl4)-induced liver injury and fibrosis in mice. MATERIALS AND METHODS: Thirty-six male Balb/C mice were randomized into five groups: normal control, AB control, CCl4 control, CCl4 + AB-200 mg/kg, and CCl4 + AB-400 mg/kg. In mice, liver injury was induced by intraperitoneal injection of CCl4 (20% in corn oil, 5 ml/kg body weight) thrice a week for six consecutive weeks. AB extract at two doses (200 mg/kg and 400 mg/kg body weight) was administered orally for six consecutive weeks. Liver injury-related serum markers (ALT, AST, ALP), antioxidants (GSH, GST, SOD, and vitamin C), pro-inflammatory cytokines including tumor necrosis factor-α (TNF-α), interleukin (IL)-1ß, and IL-18, ultrasonographic and histological alterations, proteins of matrix metalloproteinases (MMPs) and tissue inhibitors of matrix metalloproteinase-1 (TIMP-1), nuclear factor-κB (p65) (NF-κB), nod-like receptor protein 3 (NLRP3), and TGF-ß/Smad signaling were accessed. LC-Q-TOF-MS/MS analysis of AB was performed. RESULTS: AB treatment significantly decreased the CCl4-induced rise in serum ALT, AST, and ALP activities and improved the histological alterations. Compared with the CCl4-treated group, treatment with AB significantly restored the hepatic antioxidants and reduced the pro-inflammatory cytokines in the liver. The antioxidant activity of AB may be attributed to its terpenoid constituents, which was confirmed by LC-Q-TOF-MS/MS analysis. The CCl4-induced rise in expression of MMP-2 and MMP-9 and decrease in TIMP-1 were markedly restored in the AB-treated groups. Further findings revealed a significant reduction in the protein levels of phospho-NF-κB (p65), NLRP3, TGF-ß, pSmad2/3, collagen I, and α-smooth muscle actin (α-SMA) in the AB treatment groups. CONCLUSIONS: The hepatoprotective effect of AB may be attributed to the high content of terpenoid compounds and alleviates liver injury and associated fibrotic changes through modulating MMPs, NF-κB (p65), and the TGF-ß/Smad axis.


Subject(s)
Antioxidants , Chemical and Drug Induced Liver Injury, Chronic , Mice , Animals , Antioxidants/pharmacology , Antioxidants/therapeutic use , Antioxidants/metabolism , Transforming Growth Factor beta/metabolism , NF-kappa B/metabolism , Carbon Tetrachloride/adverse effects , Chemical and Drug Induced Liver Injury, Chronic/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Tandem Mass Spectrometry , Tissue Inhibitor of Metalloproteinase-1/metabolism , Liver , Liver Cirrhosis/drug therapy , Cytokines/metabolism , Oxidative Stress , Plant Extracts/pharmacology , Plant Extracts/therapeutic use , Plant Extracts/metabolism , Body Weight
20.
Int Immunopharmacol ; 115: 109613, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36577154

ABSTRACT

Nuciferine (NCF) is an aporphine alkaloid and a principal bioactive constituent in the lotus plant. Herewith, we investigated the potential anti-inflammatory effect and underlying mechanisms of NCF employing dextran sulfate sodium (DSS)-induced ulcerative colitis in mice, a predominant intestinal inflammatory disease, and mouse RAW 264.7 cells in vitro. Lipopolysaccharide (LPS) was used to generate an inflammatory response in the RAW 264.7 cells. The disease activity index (DAI), colon morphology, colonoscopy, and colon histopathology were performed to assess experimental colitis. The biochemical assays, enzyme-linked immunosorbent assay (ELISA), and immunoblot analysis were performed to understand the underlying mechanisms. In RAW 264.7 cells, NCF pretreatment significantly decreased the expression of inducible nitric oxide synthase (iNOS), the expression and release of pro-inflammatory cytokines including interleukin (IL)-1ß, IL-18, and tumor necrosis factor-α (TNF-α) and interfered with the activation of mitogen-activated protein kinase (MAPK), nuclear factor-κB (NF-κB), and NOD-like family pyrin domain containing 3 (NLRP3) signaling pathways. The oral treatment of NCF substantially alleviated the DSS-induced DAI, increased colon length, and restored colon morphology and histology. Compared to the DSS-induced mice, the proteins involved in the activation of MAPK/NF-κB/NLRP3 pathways and the cytokines were markedly decreased in the NCF-treated mice. Moreover, the tight junction architecture of the colon was well-maintained in NCF treatment groups by regulating the expression of claudin-1 and zonula occludens-1 (ZO-1) proteins. All these findings suggest that NCF can be a promising molecule to modulate ulcerative colitis.


Subject(s)
Aporphines , Colitis, Ulcerative , Colitis , Animals , Mice , NF-kappa B/metabolism , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Caspase 1/metabolism , Mitogen-Activated Protein Kinases/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/metabolism , Colon/pathology , Aporphines/pharmacology , Aporphines/therapeutic use , Cytokines/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Dextran Sulfate/pharmacology , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...