Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Omega ; 9(21): 22979-22989, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38826557

ABSTRACT

Liver diseases pose a significant global health burden, with limited therapeutic options for chronic cases. Zinc oxide (ZnO) nanomaterials have emerged as promising candidates for hepatoprotection due to their antioxidant, anti-inflammatory, and regenerative properties. However, their potential remains hampered by insufficient drug loading and controlled release. The current study explores the intercalation of Naproxen (Nx), a potent anti-inflammatory and analgesic drug, within ZnO stacked nanosheets (SNSs) to address these limitations. Herein, an easy and solution-based synthesis of novel Nx intercalated ZnO SNSs was established. The obtained Nx intercalated ZnO SNSs were encapsulated with poly(vinyl acetate) (PVA) to make them biocompatible. The synthesized biocomposite was characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared spectroscopy (FTIR), which confirm the successful synthesis and intercalation of Nx within the ZnO SNSs. The obtained outcomes showed that the configuration of ZnO nanosheets was altered when Nx was introduced, resulting in a more organized stacking pattern. An in vivo investigation of mice liver cells unveiled that the Nx intercalated ZnO SNss had increased hepatoprotective properties. The study's results provide valuable insights into using Nx intercalated ZnO SNss for targeted drug delivery and improved treatment effectiveness, particularly for liver-related illnesses.

3.
Microsc Res Tech ; 87(6): 1286-1305, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38351883

ABSTRACT

Diabetes is a life-threatening disease that affects different parts of the body including the liver, kidney, and pancreas. The core root of diabetes is mainly linked to oxidative stress produced by reactive oxygen species (ROS). Berberis lyceum Royle (BLR) is the source of natural products. It comprises numerous bioactive compounds having antioxidant activities. In the current investigation, silver nanoparticles from BLR root extract were synthesized, characterized, and assessed for antidiabetic potential. UV spectrophotometry, Transmission electron microscopy (TEM), Fourier transform infra-red spectroscopy (FTIR), and x-ray diffraction (XRD) were applied for the characterization of NPs. It was evident from the morphological studies that the synthesized NPs were spherical and the average size was 11.02 nm. Results revealed that BLR-AgNPs showed higher radical scavenging activity as compared to BLR extract. Moreover, BLR-AgNPs displayed superior in vivo and in vitro antidiabetic activity in comparison to BLR extract. Glucose level (116.5 ± 5.1 mg/dL), liver function test (ALAT: 54.038 ± 6.2 IU/L; ASAT: 104.42 ± 13.9 IU/L; ALP: 192.6 ± 2.4 IU/L; bilirubin: 1.434 ± 0.14 mg/dL; total protein: 5.14 ± 0.24 mg/dL), renal function test (urea: 39.6 ± 0.63 mg/dL; uric acid: 21.4 ± 0.94 mg/dL; creatinine: 0.798 ± 0.03 mg/dL; albumin: 4.14 ± 0.2 mg/dL), lipid profile level (cholesterol: 101.62 ± 3 mg/dL; triglyceride: 110.42 ± 7 mg/dL; HDL-C: 29.7 ± 3 mg/dL; LDL-C: 47.056 ± 1 mg/dL; VLDL-C: 22.0 ± 1.3 mg/dL) and hematology (WBCs: 3.82 ± 0.24 103 /µL; RBCs: 4.78 ± 0.42 106 /µL; Hb: 12.6 ± 1.0 g/dL; Hematocrit: 39.4 ± 3.7%; MCV: 65.8 ± 3 fL; platelets: 312 ± 22.4; neutrophils: 34.8 ± 1.87; eosinophils: 3.08 ± 0.43; monocytes: 3.08 ± 0.28; lymphocytes: 75.6 ± 3.77) confirmed the significant antidiabetic potential of BLR-AgNPs. Histopathological examination authenticated that BLR-AgNPs caused a significant revival in the morphology of the liver, kidney, and pancreas. Hence, findings of the study suggested the BLR-AgNPs as a potent antidiabetic agent and could be an appropriate nanomedicine to prevent diabetes in future. RESEARCH HIGHLIGHTS: Berberis lyceum extract as a reducing, capping, and stabilization agent for the BLR-AgNPs synthesis Evaluation of α-amylase inhibition, antioxidant, and α-glucosidase inhibition potential Thorough characterization using Fourier transform infrared spectroscopy, Transmission electron microscopy, x-ray diffraction, and UV-VIS spectrophotometer, which is 1st of its kind In-vivo antidiabetic activity evaluation through multiple biomarkers.


Subject(s)
Berberis , Diabetes Mellitus , Metal Nanoparticles , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Silver/pharmacology , X-Ray Diffraction , Antioxidants/pharmacology , Spectroscopy, Fourier Transform Infrared , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , Microscopy, Electron, Transmission , Anti-Bacterial Agents/pharmacology
4.
Sci Prog ; 107(1): 368504231221670, 2024.
Article in English | MEDLINE | ID: mdl-38232951

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) such as 7, 12-dimethylbenzneanthracene (DMBA), due to long-term bioaccumulation cause serious physiological processes and behavioral dysfunctions such as cancer, ageing, and hypertension. Silk sericin (SS) is instrumental in cancer applications due to presence of flavonoids and carotenoids which are natural pigments, present in the layer of sericin that has antioxidant and antityrosinase activity. It reduces oxidative stress and suppresses cancer cytokines while interacting with reactive oxygen species (ROS) to stand against lipid peroxidation. Recent research was focused to calculate the pharmacological intervention of sericin-conjugated silver nanoparticles (S-AgNO3 NPs) against DMBA-induced toxicity. For this purpose, SS protein was extracted from silkworm cocoons by degumming process and the prepared S-AgNO3 NPs via a green synthesis. In female albino mice, a total of 50 mg/kg oral administration of DMBA was used for the induction of toxicity which required almost 8 to 10 weeks approximately. After 60 days of experimentation, mice were dissected, blood samples were collected for further hematological and biochemical analysis and were euthanized via cervical dislocation. There was a significant rise in the level of red blood cells, platelets, lymphocytes, and hemoglobin at the highest applied concentration of sericin and its nanoparticles. Similarly, a reasonable decline was observed in the level of white blood cells, neutrophils, eosinophils, and monocytes as compared to the cancer-inducing group. The level of glutathione, lactate dehydrogenase, and alkaline phosphatase as well as immunoglobulins such as immunoglobulin A (IgA), immunoglobulin G (IgG), and immunoglobulin M (IgM) were significantly reduced in all treatment groups as compared to the DMBA-induced group. Substantial effects were demonstrated in response to S-AgNO3 NPs II (T) at the highest concentrations (200 mg/kg, BW) as follows: glutathione (2.42 ± 0.26 µmol/L), lactate dehydrogenase (493.6 ± 5.78 U/L), alkaline phosphatase (158.4 ± 6.35 U/L), IgA (4.22 ± 0.19 g/L), IgG (70 ± 1.70 g/L), and IgM (4.76 ± 0.12). The histopathological study of the liver, kidneys, and brain revealed that the DMBA-induced group showed cytotoxic effects against all selected organs of mice that were recovered by treatment of selective compounds but highly effective recovery was seen in S-AgNO3 NPs II (T). These results concluded that silk S-AgNO3 NPs showed significant pharmacological potential against cancer-inducing toxicity.


Subject(s)
Metal Nanoparticles , Neoplasms , Sericins , Female , Mice , Animals , Sericins/therapeutic use , Sericins/toxicity , Silver/toxicity , Mice, Inbred BALB C , Metal Nanoparticles/therapeutic use , Metal Nanoparticles/toxicity , Alkaline Phosphatase , Silk/chemistry , Glutathione/metabolism , Immunoglobulin A , Immunoglobulin G , Immunoglobulin M , Lactate Dehydrogenases
5.
Microsc Res Tech ; 86(3): 320-330, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36582143

ABSTRACT

The antibacterial activity of synthetic antimicrobial agents is well known, but most of them have several side effects and are effective against selective microbes. Recently, major concern for the microbiologists is to investigate for some stable, non-toxic, cheap, and eco-friendly antimicrobial agents with a wide range of bactericidal potential. A cost-effective and environmentally friendly alternate has been proposed in the form of green synthesized nanoparticles. The Present study was designed to fabricate sericin-coated silver nanoparticles (S-AgNPs) using sericin as stabilizer and reductant of silver ions and their antibacterial potential was evaluated at various concentrations and temperatures (8, 40, and 50°C). Antimicrobial activities were assessed by the agar well diffusion method. Antibacterial activity of S-AgNPs was measured at different concentrations (1-6 mg/ml) whereas; antifungal activity was tested at 5-20 mg/ml of S-AgNPs. Nanoparticles were characterized by UV-visible spectrophotometer, Fourier transform infrared spectroscopy, and scanning electron microscopy. These nanoparticles significantly subdued the growth of Clostridium difficile (18.7 ± 0.9 mm), Proteus mirabilis (12.3 ± 0.3 mm) and Bacillus licheniformis (10.7 ± 0.9 mm) and Aspergillus flavus (18.7 ± 2.0 mm), Mucor mycetes (13 .0 ± 1.5 mm), Candida albicans (15.3 ± 0.3 mm) and Aspergillus niger (10.0 ± 0.6 mm). S-AgNPs were stable at all temperatures and the maximum growth inhibition was found at 8°C for all pathogenic strains. We concluded that the S-AgNPs could be a potential candidate to inhibit the growth of bacterial and fungal pathogens at a wide range of environmental conditions like temperature. In various biomedical applications including antimicrobial and wound dressings, S-AgNPs can be used in the future to treat various bacterial and fungal infections.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Sericins , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Metal Nanoparticles/chemistry , Plant Extracts/chemistry , Sericins/chemistry , Silver/pharmacology , Spectroscopy, Fourier Transform Infrared , Staphylococcus aureus
6.
J Oleo Sci ; 71(9): 1363-1374, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35965088

ABSTRACT

Probiotics frontier in depressing the clinical bacterial pathogens to avoid multidrug resistance phenomenon. The present study aimed to determine the antibacterial efficiency of chitosan encapsulated probiotics isolated from buffalo milk samples against clinical bacterial pathogens. The Agar well method was used for antibacterial activity. Lactococcus lactis (A) and Lactobacillus curvattus (B) were isolated from fresh buffalo milk samples, identified via culturing media, Gram's staining, biochemical tests, and antibiogram analysis. Encapsulation of probiotics was carried out using chitosan and was characterized via a scanning electron microscope. Antibiogram analysis elicit that L. lactis culture (A1) was highly sensitive to chloramphenicol (17.66±0.47 mm), tobramycin (15.33±0.47 mm), and ciprofloxacin (12.33±0.47 mm) and resistant against tetracycline, Penicillin G, Erythromycin, Amoxycillin, Ceftriaxone, Cephalothin, and Cephradine, while L. curvattus culture (B1) was affected by Ceftriaxone (18.67±0.47 mm), Amoxycillin (14.33±0.94 mm), Cephalothin (13.67±0.47 mm), Erythromycin (13.33±0.47 mm), Penicillin G (12.67±0.47 mm), Cephradine (10.33±0.47 mm), and Chloramphenicol (9.67±0.47 mm) and resistant against tetracycline, Tobramycin, and Ciprofloxacin. Antibacterial efficacy of non-encapsulated probiotic cultures was significant and maximum inhibition of bacterial were recorded compared to their cellular components. SEM of encapsulated probiotics revealed that they were successfully covered with a chitosan protective layer and could be effective as bio-preservatives due to being slowly released at the target site. The current study concluded that L. lactis, L. curvattus, and their cellular components have a significant bactericidal effect against infectious pathogens and could be used as a potential therapeutic drug against infectious diseases.


Subject(s)
Chitosan , Lactococcus lactis , Probiotics , Amoxicillin , Animals , Anti-Bacterial Agents/pharmacology , Buffaloes , Ceftriaxone , Cephalothin , Cephradine , Chitosan/pharmacology , Chloramphenicol , Ciprofloxacin , Erythromycin , Lactobacillus/physiology , Lactococcus lactis/chemistry , Lactococcus lactis/physiology , Probiotics/pharmacology , Tetracyclines , Tobramycin
7.
Front Pharmacol ; 13: 795613, 2022.
Article in English | MEDLINE | ID: mdl-35281907

ABSTRACT

Paclitaxel resistance is a challenging factor in chemotherapy resulting in poor prognosis and cancer recurrence. Signal transducer and activator of transcription factor 3 (STAT3), a key transcription factor, performs a critical role in cancer development, cell survival and chemoresistance, while its inactivation overwhelms drug resistance in numerous cancer types including lung cancer. Additionally, the fucosyltransferase 4 (FUT4) is a crucial enzyme in post-translational modification of cell-surface proteins involved in various pathological conditions such as tumor multidrug resistance (MDR). The P-glycoprotein (P-GP) is the well-known ABC transporter member that imparts drug resistance in different cancer types, most notably paclitaxel resistance in lung cancer cells. LncRNA-MALAT1 exerts a functional role in the cancer development as well as the drug resistance and is linked with STAT3 activation and activity of FUT4. Moreover, STAT3-mediated induction of P-GP is well-documented. Natural compounds of Sesquiterpene Lactone (SL) family are well-known for their anticancer properties with particular emphasis over STAT3 inhibitory capabilities. In this study, we explored the positive correlation of MALAT1 with STAT3 and FUT4 activity in paclitaxel resistant A549 (A549/T) lung cancer cells. Additionally, we investigated the anticancer activity of two well-known members of SLs, alantolactone (ALT) and Brevilin A (Brv-A), in A549/T lung cancer cells. ALT and Brv-A induced apoptosis in A549/T cells. Furthermore, these two natural SLs suppressed MALAT1 expression, STAT3 activation, and FUT4 and P-GP expression which are the hallmarks for paclitaxel resistance in A549 lung cancer cells. The inhibition of MALAT1 enhanced the competence of these SLs members significantly, which accounted for the growth inhibition as well as anti-migratory and anti-invasive effects of ALT and Brv-A. These findings suggest SLs to be the promising agents for overcoming paclitaxel resistance in A549 lung cancer cells.

8.
Mol Genet Genomic Med ; 9(12): e1788, 2021 12.
Article in English | MEDLINE | ID: mdl-34738740

ABSTRACT

BACKGROUND: Thalassemia is an inherited hematological disorder categorized by a decrease or absence of one or more of the globin chains synthesis. Beta-thalassemia is caused by one or more mutations in the beta-globin gene. The absence or reduced amount of beta-globin chains causes ineffective erythropoiesis which leads to anemia. METHODS: Beta-thalassemia has been further divided into three main forms: thalassemia major, intermedia, and minor/silent carrier. A more severe form among these is thalassemia major in which individuals depend upon blood transfusion for survival. The high level of iron deposition occurs due to regular blood transfusion therapy. RESULTS: Overloaded iron raises the synthesis of reactive oxygen species (ROS) that are noxious and prompting the injury to the hepatic, endocrine, and vascular system. Thalassemia can be analyzed and diagnosed via prenatal testing (genetic testing of amniotic fluid), blood smear, complete blood count, and DNA analysis (genetic testing). Treatment of thalassemia intermediate is symptomatic; however; it can also be accomplished by folic supplementation and splenectomy. CONCLUSION: Thalassemia major can be cured through regular transfusion of blood, transplantation of bone marrow, iron chelation management, hematopoietic stem cell transplantation, stimulation of fetal hemoglobin production, and gene therapy.


Subject(s)
beta-Thalassemia/diagnosis , beta-Thalassemia/therapy , Alleles , Animals , Clinical Decision-Making , Combined Modality Therapy , Disease Management , Disease Susceptibility , Genetic Testing , Genotype , Humans , Incidence , Mutation , Phenotype , Prevalence , Prognosis , Severity of Illness Index , Treatment Outcome , beta-Globins/genetics , beta-Thalassemia/complications , beta-Thalassemia/etiology
9.
Pharmaceutics ; 13(10)2021 Oct 14.
Article in English | MEDLINE | ID: mdl-34683970

ABSTRACT

Diabetes is a life-threatening disease, and chronic diabetes affects parts of the body including the liver, kidney, and pancreas. The root cause of diabetes is mainly associated with oxidative stress produced by reactive oxygen species. Minocycline is a drug with a multi-substituted phenol ring and has shown excellent antioxidant activities. The objective of the present study was to investigate the antidiabetic potential of minocycline-modified silver nanoparticles (mino/AgNPs) against alloxan-induced diabetic mice. The mino/AgNPs were synthesized using minocycline as reducing and stabilizing agents. UV-visible, FT-IR, X-ray diffraction (XRD), and transmission electron microscopy (TEM) were applied for the characterization of mino/AgNPs. A 2,2-diphenyl-1-picrylhydrazyl free radical scavenging assay was conducted to determine the antioxidant potential of newly synthesized mino/AgNPs. The results revealed that the mino/AgNPs showed higher radical scavenging activity (IC50 = 19.7 µg/mL) compared to the minocycline (IC50 = 26.0 µg/mL) and ascorbic acid (IC50 = 25.2 µg/mL). Further, mino/AgNPs were successfully employed to examine their antidiabetic potential against alloxan-induced diabetic mice. Hematological results showed that the mice treated with mino/AgNPs demonstrated a significant decrease in fasting blood glucose level and lipid profile compared to the untreated diabetic group. A histopathological examination confirmed that the diabetic mice treated with mino/AgNPs showed significant recovery and revival of the histo-morphology of the kidney, central vein of the liver, and islet cells of the pancreas compared to the untreated diabetic mice. Hence, mino/AgNPs have good antidiabetic potential and could be an appropriate nanomedicine to prevent the development of diabetes.

10.
Mol Biol Rep ; 48(12): 8141-8153, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34655018

ABSTRACT

Aging and age-related disorders have become one of the prominent issue of world. Oxidative stress due to overproduction of reactive oxygen species is the most significant cause of aging. The aim of literature compilation was to elucidate the therapeutic effect of vitamin C against oxidative stress. Various mediators with anti-inflammatory and anti-oxidant properties might be probable competitors of vitamin C for the improvement of innovative anti-aging treatments. More attention has been paid to vitamin C due to its anti-oxidant property and potentially beneficial biological activities for inhibiting aging.Vitamin C acts as an antioxidant agent and free radical scavenger that can protect the cell from oxidative stress, disorganization of chromatin, telomere attrition, and prolong the lifetime. This review emphasizes mechanism of aging and various biomarkers that are directly related to aging and also focuses on the therapeutic aspect of vitamin C against oxidative stress and age-related disorders.


Subject(s)
Aging/drug effects , Aging/physiology , Ascorbic Acid/pharmacology , Animals , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Ascorbic Acid/metabolism , Free Radical Scavengers/pharmacology , Humans , Oxidative Stress/physiology , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL
...