Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 15(14)2023 Jul 10.
Article in English | MEDLINE | ID: mdl-37514388

ABSTRACT

Dehumidifying air via refrigerant cooling method consumes a tremendous amount of energy. Independent humidity control systems using desiccants have been introduced to improve energy efficiency. This research aimed to find an alternative to the commonly used solid desiccant, silica gel, which has weak physical adsorption properties. It also aimed to overcome the limitation of liquid desiccants that may affect indoor air quality and cause corrosion. This study reports on the synthesis of poly(vinyl alcohol-co-acrylic acid), P(VA-AA), through solution polymerisation by hydrolysing poly(vinyl acetate-co-acrylic acid), P(VAc-AA). This viable copolymer was then incorporated with graphene oxide (GO) at different concentrations (0 wt.%, 0.5 wt.%, 2 wt.% and 5 wt.%) to enhance the adsorption-desorption process. The samples were tested for their ability to adsorb moisture at different levels of relative humidity (RH) and their capability to maintain optimum sorption capacity over 10 repeated cycles. The nanocomposite film with 2% GO, P(VA-AA)/GO2, exhibited the highest moisture sorption capacity of 0.2449 g/g for 60-90% RH at 298.15 K, compared to its pristine copolymer, which could only adsorb 0.0150 g/g moisture. The nanocomposite desiccant demonstrated stable cycling stability and superior desorption in the temperature range of 318.15-338.15 K, with up to 88% moisture desorption.

3.
Bioorg Chem ; 135: 106511, 2023 06.
Article in English | MEDLINE | ID: mdl-37027951

ABSTRACT

Medication products from natural materials are preferred due to their minimal side effects. Extra-virgin olive oil (EVOO) is a highly acclaimed Mediterranean diet and a common source of lipids that lowers morbidity and disease severity. This study synthesised two fatty amides from EVOO: hydroxamic fatty acids (FHA) and fatty hydrazide hydrate (FHH). The Density Functional Theory (DFT) was applied to quantum mechanics computation. Nuclear magnetic resonance (NMR), Fourier transforms infrared (FTIR), and element analysis were used to characterise fatty amides. Likewise, the minimum inhibitory concentration (MIC) and timing kill assay were determined. The results revealed that 82 % for FHA and 80 % for FHH conversion were achieved. The amidation reagent/EVOO ratio (mmol: mmol) was 7:1, using the reaction time of 12 h and hexane as an organic solvent. The results further revealed that fatty amides have high antibacterial activity with low concentration at 0.04 µg/mL during eight h of FHA and 0.3 µg/mL during ten h of FHH. This research inferred that FHA and FHH could provide an alternative and effective therapeutic strategy for bacterial diseases. Current findings could provide the basis for the modernisation/introduction of novel and more effective antibacterial drugs derived from natural products.


Subject(s)
Models, Theoretical , Olive Oil/analysis , Olive Oil/chemistry , Olive Oil/pharmacology , Spectrum Analysis
4.
Polymers (Basel) ; 15(23)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38232004

ABSTRACT

Polyaniline (PANI) is a conductive polymer easily converted into a conducting state. However, its limited mechanical properties have generated interest in fabricating PANI composites with other polymeric materials. In this study, a PANI-prevulcanized latex composite film was synthesized and fabricated in two phases following chronological steps. The first phase determined the following optimum parameters for synthesizing nanosized PANI, which were as follows: an initial molar ratio of 1, a stirring speed of 600 rpm, a synthesis temperature of 25 °C, purification via filtration, and washing using dopant acid, acetone, and distilled water. The use of a nonionic surfactant, Triton X-100, at 0.1% concentration favored PANI formation in a smaller particle size of approximately 600 nm and good dispersibility over seven days of observation compared to the use of anionic sodium dodecyl sulfate. Ultraviolet-visible spectroscopy (UV-Vis) showed that the PANI synthesized using a surfactant was in the emeraldine base form, as the washing process tends to decrease the doping level in the PANI backbone. Our scanning electron microscopy analysis showed that the optimized synthesis parameters produced colloidal PANI with an average particle size of 695 nm. This higher aspect ratio explained the higher conductivity of nanosized PANI compared to micron-sized PANI. Following the chronological steps to determine the optimal parameters produced a nanosized PANI powder. The nanosized PANI had higher conductivity than the micron-sized PANI because of its higher aspect ratio. When PANI is synthesized in smaller particle sizes, it has higher conductivity. Atomic force microscopy analysis showed that the current flow is higher across a 5 µm2 scanned area of nanosized PANI because it has a larger surface area. Thus, more sites for the current to flow through were present on the nanosized PANI particles.

5.
Nanomaterials (Basel) ; 12(6)2022 Mar 21.
Article in English | MEDLINE | ID: mdl-35335835

ABSTRACT

The rheological behavior of two-dimensional (2D) MoS2-based ethylene glycol (EG) nanofluids (NFs) was investigated at low volume concentrations (0.005%, 0.0075%, and 0.01%) in a wide temperature range of 0-70 °C and at atmospheric pressure. A conventional two-step method was followed to prepare NFs at desired volume concentrations. Based on the control rotational (0.1-1000 s-1 shear rate) and oscillation (0.01-1000% strain) methods, the viscoelastic flow curves and thixotropic (3ITT (three interval thixotropic) and hysteresis loop) characteristics of NFs were examined. Shear flow behavior revealed a remarkable reduction (1.3~14.7%) in apparent dynamic viscosity, which showed concentration and temperature dependency. Such remarkable viscosity results were assigned to the change in activation energy of the ethylene glycol with the addition of MoS2. However, the nanofluids exhibited Newtonian behavior at all temperatures for concentrations below 0.01% between 10 and 1000 s-1. On the other hand, strain sweep (@1Hz) indicated the viscoelastic nature of NFs with yielding, which varied with concentration and temperature. Besides, 3ITT and hysteresis loop analysis was evident of non-thixotropic behavior of NFs. Among all tested concentrations, 0.005% outperformed at almost all targeted temperatures. At the same time, ~11% improvement in thermal conductivity can be considered advantageous on top of the improved rheological properties. In addition, viscosity enhancement and reduction mechanisms were also discussed.

6.
R Soc Open Sci ; 8(4): 201087, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33996112

ABSTRACT

Polyols of palm olein/polyethylene terephthalate (PET) were synthesized by means of incorporating recycled PET from waste drinking bottles in different proportions into palm olein alkyd in the presence of ethylene glycol. The polyols were characterized by FTIR, and theirs hydroxyl value (OHV), acid value (AV) and viscosity were determined. The formulation of the polyurethane coating was carried out by dissolving the polyol in mixed solvent of cyclohexanone/tetrahydrofuran (THF) (4 : 1) followed by reacting 1 hydroxyl equivalent of the polyol with 1.2 equivalents of methylene diphenyldiisocyanate and 0.05% dibutyltin dilaurate (DBTDL) catalyst. The coating cured through the cross-linking reactions between hydroxyl and isocyanate groups. The formation of urethane linkages was established by FTIR spectroscopy. The set films were characterized by thermal analysis. To study their anticorrosion properties, polarization measurements and EIS in 3.5% NaCl solution were determined. The coatings displayed good thermal stability and anticorrosion properties which were supported by XRD analysis. The PU7 coating, with the highest proportion of PET (up to 15% w/w), displayed significantly improved thermal stability and anticorrosion properties. It is evident that the performance of the polyurethane (PU) coatings could be enhanced by the incorporation of PET.

7.
RSC Adv ; 11(25): 15428-15437, 2021 Apr 21.
Article in English | MEDLINE | ID: mdl-35424049

ABSTRACT

Various reports demonstrated that azobenzene derivatives are the chromophore of choice in photoresponsive surfaces showing reversible surface polarity. Hitherto the surface study of coating films based on polymer/azobenzene blends using contact angle measurements remained unexplored. To provide insight into the surface polarity of polymer/dye blend films, poly(methyl methacrylate) (PMMA) blends containing photoresponsive 4-hydroxy-4'-methylazobenzene (AZO1) and 4,4'-dimethylazobenzene (AZO2) as coating films on clear glass substrates are investigated in this work. Contact angle measurements were carried out to unravel the role of substituents in the surface polarity and the orientation of chromophores in the coating matrices before and after UV light (λ max = 365 nm) irradiation. Changes in water contact angles measured on the PMMA/azobenzene coating films indicated that the surface polarity is reversible as the chromophores underwent reversible trans-cis isomerisation. It has been revealed that the repeated trans-cis isomerisation led to the random reorientation and arrangement of chromophores in PMMA/AZO1 coating films. Then, to indicate the possibility of the disruption of interfacial interactions due to the repeated trans-cis isomerisation processes, as a proof of concept experiment, it is shown that the commercial acrylic-based pressure-sensitive sticker which adhered strongly to the PMMA/AZO1(13) coating film is peeled off from the coating surface after being subjected to a cycle of UV light irradiation for 12 hours, followed by dark conditions for another 12 hours within 14 days. The proof of concept study will lead to more development of smart photoresponsive coating films using simple polymer/dye blends.

8.
Nanomaterials (Basel) ; 9(4)2019 Apr 21.
Article in English | MEDLINE | ID: mdl-31010071

ABSTRACT

The present research focused on the fabrication of biocompatible polyhydroxyalkanoate, chitosan, and hexagonal boron nitride incorporated (PHA/Ch-hBN) nanocomposites through a simple solvent casting technique. The fabricated nanocomposites were comprehensively characterized by Fourier transform infrared spectroscope (FT-IR), field emission scanning electroscope (FESEM), and elemental mapping and thermogravimetric analysis (TGA). The antibacterial activity of nanocomposites were investigated through time-kill method against multi drug resistant (MDR) microbes such as methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli (E. coli) K1 strains. In addition, nanocomposites have examined for their host cytotoxicity abilities using a Lactate dehydrogenase (LDH) assay against spontaneously immortalized human keratinocytes (HaCaT) cell lines. The results demonstrated highly significant antibacterial activity against MDR organisms and also significant cell viability as compared to the positive control. The fabricated PHA/Ch-hBN nanocomposite demonstrated effective antimicrobial and biocompatibility properties that would feasibly suit antibacterial and biomedical applications.

9.
Polymers (Basel) ; 8(2)2016 Feb 15.
Article in English | MEDLINE | ID: mdl-30979143

ABSTRACT

The present study highlights the facile synthesis of polyaniline (PANI)-based nanocomposites doped with SrTiO3 nanocubes synthesized via the in situ oxidative polymerization technique using ammonium persulfate (APS) as an oxidant in acidic medium for the photocatalytic degradation of methylene blue dye. Field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), X-ray diffraction (XRD), UV⁻Vis spectroscopy, Brunauer⁻Emmett⁻Teller analysis (BET) and Fourier transform infrared spectroscopy (FTIR) measurements were used to characterize the prepared nanocomposite photocatalysts. The photocatalytic efficiencies of the photocatalysts were examined by degrading methylene blue (MB) under visible light irradiation. The results showed that the degradation efficiency of the composite photocatalysts that were doped with SrTiO3 nanocubes was higher than that of the undoped polyaniline. In this study, the effects of the weight ratio of polyaniline to SrTiO3 on the photocatalytic activities were investigated. The results revealed that the nanocomposite P-Sr500 was found to be an optimum photocatalyst, with a 97% degradation efficiency after 90 min of irradiation under solar light.

10.
Polymers (Basel) ; 8(5)2016 Apr 28.
Article in English | MEDLINE | ID: mdl-30979266

ABSTRACT

Poly(phenyl-(4-(6-thiophen-3-yl-hexyloxy)-benzylidene)-amine) (P3TArH) was successfully synthesized and coated on the surface of Fe3O4 magnetic nanoparticles (MNPs). The nanocomposites were characterized by Fourier transform infra-red (FTIR), X-ray diffractometry (XRD), Brunauer-Emmett-Teller (BET) surface area analysis, analyzer transmission electron microscopy (TEM) and vibrating sample magnetometry (VSM). P3TArH-coated MNPs (MNP@P3TArH) showed higher capabilities for the extraction of commonly-used phthalates and were optimized for the magnetic-solid phase extraction (MSPE) of environmental samples. Separation and determination of the extracted phthalates, namely dimethyl phthalate (DMP), diethyl phthalate (DEP), dipropyl phthalate (DPP), dibutyl phthalate (DBP), butyl benzyl phthalate (BBP), dicyclohexyl phthalate (DCP), di-ethylhexyl phthalate (DEHP) and di-n-octyl phthalate (DNOP), were conducted by a gas chromatography-flame ionization detector (GC-FID). The best working conditions were as follows; sample at pH 7, 30 min extraction time, ethyl acetate as the elution solvent, 500-µL elution solvent volumes, 10 min desorption time, 10-mg adsorbent dosage, 20-mL sample loading volume and 15 g·L-1 concentration of NaCl. Under the optimized conditions, the analytical performances were determined with a linear range of 0.1⁻50 µg·L-1 and a limit of detection at 0.08⁻0.468 µg·L-1 for all of the analytes studied. The intra-day (n = 7) and inter-day (n = 3) relative standard deviations (RSD%) of three replicates were each demonstrated in the range of 3.7⁻4.9 and 3.0⁻5.0, respectively. The steadiness and reusability studies suggested that the MNP@P3TArH could be used up to five cycles. The proposed method was executed for the analysis of real water samples, namely commercial bottled mineral water and bottled fresh milk, whereby recoveries in the range of 68%⁻101% and RSD% lower than 7.7 were attained.

SELECTION OF CITATIONS
SEARCH DETAIL
...