Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(11): 9037-9050, 2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38440841

ABSTRACT

The generation of hot carriers (HCs) through the excitation of localized surface plasmon resonance (LSPR) in metal nanostructures is a fascinating phenomenon that fuels both fundamental and applied research. However, gaining insights into HCs at a microscopic level has posed a complex challenge, limiting our ability to create efficient nanoantennas that utilize these energized carriers. In this investigation, we employ real-time time-dependent density functional theory (rt-TDDFT) calculations to examine the creation and distribution of HCs within a model composite system consisting of a silver (Ag) nanodisk and a carbon monoxide (CO) molecule. We find that the creation and distribution of HCs are notably affected by the CO adsorption site. Particularly, when the CO molecule adsorbs onto the hollow site of the Ag nanodisk, it exhibits the highest potential among various composite systems in terms of structural stability, enhanced orbital hybridization, and HC generation and transfer. Utilizing a Gaussian laser pulse adjusted to match the LSPR frequency, we observe a marked buildup of hot electrons and hot holes on the C and O atoms. Conversely, the region encompassing the C-O bond exhibits a depletion of hot electrons and hot holes. We believe that these findings could have significant implications in the field of HC photocatalysis.

2.
Phys Chem Chem Phys ; 26(8): 7020-7028, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38345353

ABSTRACT

Binary nanoparticles, composed of both rare-earth elements with substantial magnetic properties and transition metals known for their high magnetic ordering temperatures, hold great promise as innovative materials for novel magnetic applications. In this study, we employ an atomistic spin dynamics framework to investigate how the magnetic properties change at finite temperatures in mixed NiGd nanoparticles. We specifically examine parameters such as saturation magnetization and spin-reorientation in relation to the nanoparticle's size, which ranges from 4 nm to 16 nm, and composition. Our findings reveal that Ni75Gd25 nanoparticles demonstrate exceptional magnetic properties at finite temperatures, marked by significantly increased saturation magnetizations and magnetic ordering temperatures. In contrast, nanoparticles containing 50% and 75% Gd contents exhibit notably reduced saturation magnetizations and magnetic ordering temperatures. Theoretical findings of our study shed light on the pivotal role that the Gd content plays in determining the magnetic behaviour at finite temperatures.

3.
Phys Chem Chem Phys ; 24(48): 29528-29538, 2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36448566

ABSTRACT

Metallic nanoparticles can self-assemble into highly ordered superclusters for potential applications in optics and catalysis. Here, using first-principles quantum mechanical calculations, we investigate plasmon coupling in superclusters made of aluminum nanoparticles. More specifically, we study/compare the plasmon coupling in close-pack FCC (face-centered-cubic) and non-close-pack BCC (body-centered-cubic) superclusters. We demonstrate that the optical properties of these clusters can be fine-tuned with respect to the packing arrangement. As a key result of this work, plasmon coupling is found to be enhanced (diminished) in FCC (BCC) superclusters due to constructive (destructive) plasmon coupling. Our quantum calculations would help in the design of Al-based superclusters beneficial for plasmonics applications.

4.
Phys Chem Chem Phys ; 24(10): 5946-5955, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35195632

ABSTRACT

The packing arrangement of organic π-conjugated molecules in a nanoscale material can have a strong impact on their optical properties. Here, using real-time-propagation time dependent density functional theory (rt-TDDFT) calculations with the support of transition contribution maps, we study how modifications in the packing arrangement (cubic-like and chain-like aggregates composed of eight C60 molecules) and packing density (assembled at close distances with center-to-center inter-fullerene distances (d) varying from 9 Å to 11 Å) of C60 molecules affect the optical properties of cluster aggregates. The important conclusions drawn from this work are summarized as follows. For d = 9 Å, the charge transfer excitons produced by cubic and chain-like C60 cluster aggregates have highly different optical characteristics, as evidenced by the transition contribution maps. On the other hand, for d = 10 Å and 11 Å, both kinds of aggregates produce qualitatively similar optical features with the emergence of Wannier-like delocalized excitons having distinct degrees of localization and spatial distribution. The theoretical findings in this study elucidate the optical excitations in C60 cluster aggregates and could help in the design of more efficient organic devices.

5.
Nanomaterials (Basel) ; 12(1)2021 Dec 28.
Article in English | MEDLINE | ID: mdl-35010027

ABSTRACT

Metadynamics is a popular enhanced sampling method based on the recurrent application of a history-dependent adaptive bias potential that is a function of a selected number of appropriately chosen collective variables. In this work, using metadynamics simulations, we performed a computational study for the diffusion of vacancies on three different Al surfaces [reconstructed Al(100), Al(110), and Al(111) surfaces]. We explored the free energy landscape of diffusion and estimated the barriers associated with this process on each surface. It is found that the surfaces are unique regarding vacancy diffusion. More specically, the reconstructed Al(110) surface presents four metastable states on the free energy surface having sizable and connected passage-ways with an energy barrier of height 0.55 eV. On the other hand, the reconstructed Al(100)/Al(111) surfaces exhibit two/three metastable states, respectively, with an energy barrier of height 0.33 eV. The findings in this study can help to understand surface vacancy diffusion in technologically relevant Al surfaces.

6.
RSC Adv ; 10(10): 6092-6097, 2020 Feb 04.
Article in English | MEDLINE | ID: mdl-35497423

ABSTRACT

Organometal halide perovskite photodetectors have recently drawn significant attention due to their excellent potential to perform as broadband photodetectors. However, the photoresponse in the ultraviolet (UV) spectrum can be improved by introducing wide bandgap semiconductors. In this work, we report on a methylammonium lead iodide/p-type gallium nitride (MAPI/p-GaN) heterojunction photodetector. We demonstrate that the device is capable of detecting in the UV region by p-GaN being hybridized with MAPI. We further investigate different symmetric and asymmetric metal-electrode contacts to enhance the device performance including the response time. The asymmetric electrode configuration is found to be the most optimal configuration which results in high photoresponse (photo-responsivity is 55 mA W-1 and fall time < 80 ms). As the light illumination occurs through the GaN side, its presence ultimately reduces MAPI degradation due to efficient absorption of the UV photons by GaN film.

7.
Opt Express ; 26(12): 14869-14878, 2018 Jun 11.
Article in English | MEDLINE | ID: mdl-30114792

ABSTRACT

High-quality InxGa1-xN/GaN multi-quantum well (MQW) structures (0.05≤x≤0.13), are successfully grown on transparent and conductive (-201)-oriented ß-Ga2O3 substrate. Scanning-transmission electron microscopy and secondary ion mass spectrometry (SIMS) show well-defined high quality MQWs, while the In and Ga compositions in the wells and the barriers are estimated by SIMS. Temperature-dependant Photoluminescence (PL) confirms high optical quality with a strong bandedge emission and negligble yellow band. time-resolved PL measurements (via above/below-GaN bandgap excitations) explain carrier dynamics, showing that the radiative recombination is predominant. Our results demonstrate that (-201)-oriented ß-Ga2O3 is a strong candidate as a substrate for III-nitride-based vertical- emitting devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...