Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Cell Metab ; 31(2): 250-266.e9, 2020 02 04.
Article in English | MEDLINE | ID: mdl-32023446

ABSTRACT

Epigenetic modifications on DNA and histones regulate gene expression by modulating chromatin accessibility to transcription machinery. Here we identify methionine as a key nutrient affecting epigenetic reprogramming in CD4+ T helper (Th) cells. Using metabolomics, we showed that methionine is rapidly taken up by activated T cells and serves as the major substrate for biosynthesis of the universal methyl donor S-adenosyl-L-methionine (SAM). Methionine was required to maintain intracellular SAM pools in T cells. Methionine restriction reduced histone H3K4 methylation (H3K4me3) at the promoter regions of key genes involved in Th17 cell proliferation and cytokine production. Applied to the mouse model of multiple sclerosis (experimental autoimmune encephalomyelitis), dietary methionine restriction reduced the expansion of pathogenic Th17 cells in vivo, leading to reduced T cell-mediated neuroinflammation and disease onset. Our data identify methionine as a key nutritional factor shaping Th cell proliferation and function in part through regulation of histone methylation.


Subject(s)
Encephalomyelitis, Autoimmune, Experimental , Epigenesis, Genetic/drug effects , Histones/metabolism , Methionine , Multiple Sclerosis , Th17 Cells/metabolism , Animals , Cell Proliferation , Cytokines/metabolism , Disease Models, Animal , Encephalomyelitis, Autoimmune, Experimental/drug therapy , Encephalomyelitis, Autoimmune, Experimental/metabolism , HEK293 Cells , Humans , Methionine/metabolism , Methionine/pharmacology , Methylation , Mice, Inbred C57BL , Mice, Knockout , Multiple Sclerosis/drug therapy , Multiple Sclerosis/metabolism , Th17 Cells/cytology
2.
Sci Rep ; 9(1): 8472, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31186448

ABSTRACT

Histone H3.3 is a developmentally essential variant encoded by two independent genes in human (H3F3A and H3F3B). While this two-gene arrangement is evolutionarily conserved, its origins and function remain unknown. Phylogenetics, synteny and gene structure analyses of H3.3 genes from 32 metazoan genomes indicate independent evolutionary paths for H3F3A and H3F3B. While H3F3B bears similarities with H3.3 genes in distant organisms and with canonical H3 genes, H3F3A is sarcopterygian-specific and evolves under strong purifying selection. Additionally, H3F3B codon-usage preferences resemble those of broadly expressed genes and 'cell differentiation-induced' genes, while codon-usage of H3F3A resembles that of 'cell proliferation-induced' genes. We infer that H3F3B is more similar to the ancestral H3.3 gene and likely evolutionarily adapted for a broad expression pattern in diverse cellular programs, while H3F3A adapted for a subset of gene expression programs. Thus, the arrangement of two independent H3.3 genes facilitates fine-tuning of H3.3 expression across cellular programs.


Subject(s)
Evolution, Molecular , Histones/chemistry , Histones/genetics , Amino Acid Sequence , Animals , Codon/genetics , Conserved Sequence/genetics , Phylogeny , Selection, Genetic , Synteny/genetics
3.
Proc Natl Acad Sci U S A ; 115(45): 11513-11518, 2018 11 06.
Article in English | MEDLINE | ID: mdl-30341219

ABSTRACT

RNA virus genomes are efficient and compact carriers of biological information, encoding information required for replication both in their primary sequences and in higher-order RNA structures. However, the ubiquity of RNA elements with higher-order folds-in which helices pack together to form complex 3D structures-and the extent to which these elements affect viral fitness are largely unknown. Here we used single-molecule correlated chemical probing to define secondary and tertiary structures across the RNA genome of dengue virus serotype 2 (DENV2). Higher-order RNA structures are pervasive and involve more than one-third of nucleotides in the DENV2 genomic RNA. These 3D structures promote a compact overall architecture and contribute to viral fitness. Disrupting RNA regions with higher-order structures leads to stable, nonreverting mutants and could guide the development of vaccines based on attenuated RNA viruses. The existence of extensive regions of functional RNA elements with tertiary folds in viral RNAs, and likely many other messenger and noncoding RNAs, means that there are significant regions with pocket-containing surfaces that may serve as novel RNA-directed drug targets.


Subject(s)
Capsid/ultrastructure , Dengue Virus/ultrastructure , Genome, Viral , RNA, Viral/ultrastructure , Base Pairing , Capsid/chemistry , Capsid/metabolism , Dengue Virus/classification , Dengue Virus/genetics , Dengue Virus/metabolism , Genetic Fitness , Models, Molecular , Nucleic Acid Conformation , RNA, Viral/genetics , RNA, Viral/metabolism , Serogroup , Virus Assembly/genetics
4.
Viruses ; 10(3)2018 03 02.
Article in English | MEDLINE | ID: mdl-29498637

ABSTRACT

Circoviruses are circular single-stranded DNA (ssDNA) viruses that infect a variety of animals, both domestic and wild. Circovirus infection in birds is associated with immunosuppression and this in turn predisposes the infected animals to secondary infections that can lead to mortality. Farmed geese (Anser anser) in many parts of the world are infected with circoviruses. The majority of the current genomic information for goose circoviruses (GoCVs) (n = 40) are from birds sampled in China and Taiwan, and only two genome sequences are available from Europe (Germany and Poland). In this study, we sampled 23 wild and 19 domestic geese from the Goplo Lake area in Poland. We determined the genomes of GoCV from 21 geese; 14 domestic Greylag geese (Anser anser), three wild Greylag geese (A. anser), three bean geese (A. fabalis), and one white fronted goose (A. albifrons). These genomes share 83-95% nucleotide pairwise identities with previously identified GoCV genomes, most are recombinants with exchanged fragment sizes up to 50% of the genome. Higher diversity levels can be seen within the genomes from domestic geese compared with those from wild geese. In the GoCV capsid protein (cp) and replication associated protein (rep) gene sequences we found that episodic positive selection appears to largely mirror those of beak and feather disease virus and pigeon circovirus. Analysis of the secondary structure of the ssDNA genome revealed a conserved stem-loop structure with the G-C rich stem having a high degree of negative selection on these nucleotides.


Subject(s)
Animals, Domestic , Animals, Wild , Circoviridae Infections/veterinary , Circovirus/genetics , Geese , Poultry Diseases/epidemiology , Poultry Diseases/virology , Reassortant Viruses , Animals , Computational Biology/methods , DNA, Viral , Genetic Variation , Genome, Viral , Nucleic Acid Conformation , Phylogeny , Poland/epidemiology , Recombination, Genetic
5.
Virus Evol ; 1(1): vev009, 2015.
Article in English | MEDLINE | ID: mdl-27774281

ABSTRACT

Banana bunchy top virus (BBTV; family Nanoviridae, genus Babuvirus) is a multi-component single-stranded DNA virus, which infects banana plants in many regions of the world, often resulting in large-scale crop losses. We analyzed 171 banana leaf samples from fourteen countries and recovered, cloned, and sequenced 855 complete BBTV components including ninety-four full genomes. Importantly, full genomes were determined from eight countries, where previously no full genomes were available (Samoa, Burundi, Republic of Congo, Democratic Republic of Congo, Egypt, Indonesia, the Philippines, and the USA [HI]). Accounting for recombination and genome component reassortment, we examined the geographic structuring of global BBTV populations to reveal that BBTV likely originated in Southeast Asia, that the current global hotspots of BBTV diversity are Southeast Asia/Far East and India, and that BBTV populations circulating elsewhere in the world have all potentially originated from infrequent introductions. Most importantly, we find that rather than the current global BBTV distribution being due to increases in human-mediated movements of bananas over the past few decades, it is more consistent with a pattern of infrequent introductions of the virus to different parts of the world over the past 1,000 years.

6.
Infect Genet Evol ; 29: 203-15, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25444941

ABSTRACT

In Sudan Chickpea chlorotic dwarf virus (CpCDV, genus Mastrevirus, family Geminiviridae) is an important pathogen of pulses that are grown both for local consumption, and for export. Although a few studies have characterised CpCDV genomes from countries in the Middle East, Africa and the Indian subcontinent, little is known about CpCDV diversity in any of the major chickpea production areas in these regions. Here we analyse the diversity of 146 CpCDV isolates characterised from pulses collected across the chickpea growing regions of Sudan. Although we find that seven of the twelve known CpCDV strains are present within the country, strain CpCDV-H alone accounted for ∼73% of the infections analysed. Additionally we identified four new strains (CpCDV-M, -N, -O and -P) and show that recombination has played a significant role in the diversification of CpCDV, at least in this region. Accounting for observed recombination events, we use the large amounts of data generated here to compare patterns of natural selection within protein coding regions of CpCDV and other dicot-infecting mastrevirus species.


Subject(s)
Cicer/virology , DNA, Viral/genetics , Geminiviridae/classification , Plant Diseases/genetics , Geminiviridae/genetics , Genetic Variation , Molecular Sequence Data , Phylogeny , Plant Diseases/virology , Recombination, Genetic , Selection, Genetic , Sequence Analysis, DNA , Sudan
7.
Virol J ; 11: 166, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-25224517

ABSTRACT

BACKGROUND: Annually, rubella virus (RV) still causes severe congenital defects in around 100 000 children globally. An attempt to eradicate RV is currently underway and analytical tools to monitor the global decline of the last remaining RV lineages will be useful for assessing the effectiveness of this endeavour. RV evolves rapidly enough that much of this information might be inferable from RV genomic sequence data. METHODS: Using BEASTv1.8.0, we analysed publically available RV sequence data to estimate genome-wide and gene-specific nucleotide substitution rates to test whether current estimates of RV substitution rates are representative of the entire RV genome. We specifically accounted for possible confounders of nucleotide substitution rate estimates, such as temporally biased sampling, sporadic recombination, and natural selection favouring either increased or decreased genetic diversity (estimated by the PARRIS and FUBAR methods), at nucleotide sites within the genomic secondary structures (predicted by the NASP method). RESULTS: We determine that RV nucleotide substitution rates range from 1.19 × 10(-3) substitutions/site/year in the E1 region to 7.52 × 10(-4) substitutions/site/year in the P150 region. We find that differences between substitution rate estimates in different RV genome regions are largely attributable to temporal sampling biases such that datasets containing higher proportions of recently sampled sequences, will tend to have inflated estimates of mean substitution rates. Although there exists little evidence of positive selection or natural genetic recombination in RV, we show that RV genomes possess pervasive biologically functional nucleic acid secondary structure and that purifying selection acting to maintain this structure contributes substantially to variations in estimated nucleotide substitution rates across RV genomes. CONCLUSION: Both temporal sampling biases and purifying selection favouring the conservation of RV nucleic acid secondary structures have an appreciable impact on substitution rate estimates but do not preclude the use of RV sequence data to date ancestral sequences. The combination of uniformly high substitution rates across the RV genome and strong temporal structure within the available sequence data, suggests that such data should be suitable for tracking the demographic, epidemiological and movement dynamics of this virus during eradication attempts.


Subject(s)
Nucleic Acid Conformation , RNA, Viral/genetics , Rubella virus/genetics , Base Sequence , Genome, Viral , Genotype , Mutation , Phylogeny , Reassortant Viruses
8.
PLoS One ; 9(6): e100400, 2014.
Article in English | MEDLINE | ID: mdl-24936864

ABSTRACT

Genetic recombination is a major contributor to the ongoing diversification of HIV. It is clearly apparent that across the HIV-genome there are defined recombination hot and cold spots which tend to co-localise both with genomic secondary structures and with either inter-gene boundaries or intra-gene domain boundaries. There is also good evidence that most recombination breakpoints that are detectable within the genes of natural HIV recombinants are likely to be minimally disruptive of intra-protein amino acid contacts and that these breakpoints should therefore have little impact on protein folding. Here we further investigate the impact on patterns of genetic recombination in HIV of selection favouring the maintenance of functional RNA and protein structures. We confirm that chimaeric Gag p24, reverse transcriptase, integrase, gp120 and Nef proteins that are expressed by natural HIV-1 recombinants have significantly lower degrees of predicted folding disruption than randomly generated recombinants. Similarly, we use a novel single-stranded RNA folding disruption test to show that there is significant, albeit weak, evidence that natural HIV recombinants tend to have genomic secondary structures that more closely resemble parental structures than do randomly generated recombinants. These results are consistent with the hypothesis that natural selection has acted both in the short term to purge recombinants with disrupted RNA and protein folds, and in the longer term to modify the genome architecture of HIV to ensure that recombination prone sites correspond with those where recombination will be minimally deleterious.


Subject(s)
HIV Infections/genetics , HIV-1/physiology , Human Immunodeficiency Virus Proteins/chemistry , Protein Folding , RNA, Viral/genetics , Recombination, Genetic , Selection, Genetic/genetics , Evolution, Molecular , Genome, Viral , HIV Infections/metabolism , HIV Infections/virology , Human Immunodeficiency Virus Proteins/genetics , Human Immunodeficiency Virus Proteins/metabolism , Humans , Nucleic Acid Conformation , RNA, Viral/chemistry , RNA, Viral/metabolism
9.
J Virol ; 88(14): 7843-51, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24789787

ABSTRACT

Although homologous recombination can potentially provide viruses with vastly more evolutionary options than are available through mutation alone, there are considerable limits on the adaptive potential of this important evolutionary process. Primary among these is the disruption of favorable coevolved genetic interactions that can occur following the transfer of foreign genetic material into a genome. Although the fitness costs of such disruptions can be severe, in some cases they can be rapidly recouped by either compensatory mutations or secondary recombination events. Here, we used a maize streak virus (MSV) experimental model to explore both the extremes of recombination-induced genetic disruption and the capacity of secondary recombination to adaptively reverse almost lethal recombination events. Starting with two naturally occurring parental viruses, we synthesized two of the most extreme conceivable MSV chimeras, each effectively carrying 182 recombination breakpoints and containing thorough reciprocal mixtures of parental polymorphisms. Although both chimeras were severely defective and apparently noninfectious, neither had individual movement-, encapsidation-, or replication-associated genome regions that were on their own "lethally recombinant." Surprisingly, mixed inoculations of the chimeras yielded symptomatic infections with viruses with secondary recombination events. These recombinants had only 2 to 6 breakpoints, had predominantly inherited the least defective of the chimeric parental genome fragments, and were obviously far more fit than their synthetic parents. It is clearly evident, therefore, that even when recombinationally disrupted virus genomes have extremely low fitness and there are no easily accessible routes to full recovery, small numbers of secondary recombination events can still yield tremendous fitness gains. Importance: Recombination between viruses can generate strains with enhanced pathological properties but also runs the risk of producing hybrid genomes with decreased fitness due to the disruption of favorable genetic interactions. Using two synthetic maize streak virus genome chimeras containing alternating genome segments derived from two natural viral strains, we examined both the fitness costs of extreme degrees of recombination (both chimeras had 182 recombination breakpoints) and the capacity of secondary recombination events to recoup these costs. After the severely defective chimeras were introduced together into a suitable host, viruses with between 1 and 3 secondary recombination events arose, which had greatly increased replication and infective capacities. This indicates that even in extreme cases where recombination-induced genetic disruptions are almost lethal, and 91 consecutive secondary recombination events would be required to reconstitute either one of the parental viruses, moderate degrees of fitness recovery can be achieved through relatively small numbers of secondary recombination events.


Subject(s)
Adaptation, Biological , Homologous Recombination , Maize streak virus/genetics , Microbial Viability , DNA, Viral/chemistry , DNA, Viral/genetics , Evolution, Molecular , Maize streak virus/physiology , Plant Diseases/virology , Sequence Analysis, DNA , Zea mays/virology
10.
J Gen Virol ; 95(Pt 6): 1338-1351, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24639400

ABSTRACT

Pigeon circovirus (PiCV) has a ~2 kb genome circular ssDNA genome. All but one of the known PiCV isolates have been found infecting pigeons in various parts of the world. In this study, we screened 324 swab and tissue samples from Polish pigeons and recovered 30 complete genomes, 16 of which came from birds displaying no obvious pathology. Together with 17 other publicly available PiCV complete genomes sampled throughout the Northern Hemisphere and Australia, we find that PiCV displays a similar degree of genetic diversity to that of the related psittacine-infecting circovirus species, beak and feather disease virus (BFDV). We show that, as is the case with its pathology and epidemiology, PiCV also displays patterns of recombination, genomic secondary structure and natural selection that are generally very similar to those of BFDV. It is likely that breeding facilities play a significant role in the emergence of new recombinant PiCV variants and given that ~50 % of the domestic pigeon population is infected subclinically, all pigeon breeding stocks should be screened routinely for this virus.


Subject(s)
Circovirus/genetics , Columbidae/virology , Animals , Base Sequence , Circovirus/classification , Circovirus/isolation & purification , DNA, Viral/chemistry , DNA, Viral/genetics , Genetic Variation , Genome, Viral , Molecular Sequence Data , Nucleic Acid Conformation , Phylogeny , Poland , Recombination, Genetic , Selection, Genetic , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...