Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 63
Filter
Add more filters











Publication year range
2.
ACS Chem Neurosci ; 15(7): 1321-1334, 2024 04 03.
Article in English | MEDLINE | ID: mdl-38525994

ABSTRACT

Alzheimer's disease is the most common form of dementia encountered in an aging population. Characteristic amyloid deposits of Aß peptides in the brain are generated through cleavage of amyloid precursor protein (APP) by γ-secretase, an intramembrane protease. Cryo-EM structures of substrate γ-secretase complexes revealed details of the process, but how substrates are recognized and enter the catalytic site is still largely ignored. γ-Secretase cleaves a diverse range of substrate sequences without a common consensus sequence, but strikingly, single point mutations within the transmembrane domain (TMD) of specific substrates may greatly affect cleavage efficiencies. Previously, conformational flexibility was hypothesized to be the main criterion for substrate selection. Here we review the 3D structure and dynamics of several γ-secretase substrate TMDs and compare them with mutants shown to affect the cleavage efficiency. In addition, we present structural and dynamic data on ITGB1, a known nonsubstrate of γ-secretase. A comparison of biophysical details between these TMDs and changes generated by introducing crucial mutations allowed us to unravel common principles that differ between substrates and nonsubstrates. We identified three motifs in the investigated substrates: a highly flexible transmembrane domain, a destabilization of the cleavage region, and a basic signature at the end of the transmembrane helix. None of these appears to be exclusive. While conformational flexibility on its own may increase cleavage efficiency in well-known substrates like APP or Notch1, our data suggest that the three motifs seem to be rather variably combined to determine whether a transmembrane helix is efficiently recognized as a γ-secretase substrate.


Subject(s)
Amyloid Precursor Protein Secretases , Amyloid beta-Protein Precursor , Amyloid Precursor Protein Secretases/metabolism , Proteolysis , Patient Selection , Amyloid beta-Protein Precursor/metabolism , Protein Domains
3.
Mol Cancer Ther ; 23(6): 791-808, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38412481

ABSTRACT

Therapies that abrogate persistent androgen receptor (AR) signaling in castration-resistant prostate cancer (CRPC) remain an unmet clinical need. The N-terminal domain of the AR that drives transcriptional activity in CRPC remains a challenging therapeutic target. Herein we demonstrate that BCL-2-associated athanogene-1 (BAG-1) mRNA is highly expressed and associates with signaling pathways, including AR signaling, that are implicated in the development and progression of CRPC. In addition, interrogation of geometric and physiochemical properties of the BAG domain of BAG-1 isoforms identifies it to be a tractable but challenging drug target. Furthermore, through BAG-1 isoform mouse knockout studies, we confirm that BAG-1 isoforms regulate hormone physiology and that therapies targeting the BAG domain will be associated with limited "on-target" toxicity. Importantly, the postulated inhibitor of BAG-1 isoforms, Thio-2, suppressed AR signaling and other important pathways implicated in the development and progression of CRPC to reduce the growth of treatment-resistant prostate cancer cell lines and patient-derived models. However, the mechanism by which Thio-2 elicits the observed phenotype needs further elucidation as the genomic abrogation of BAG-1 isoforms was unable to recapitulate the Thio-2-mediated phenotype. Overall, these data support the interrogation of related compounds with improved drug-like properties as a novel therapeutic approach in CRPC, and further highlight the clinical potential of treatments that block persistent AR signaling which are currently undergoing clinical evaluation in CRPC.


Subject(s)
Disease Progression , Prostatic Neoplasms, Castration-Resistant , Signal Transduction , Animals , Humans , Male , Mice , Cell Line, Tumor , Cell Proliferation , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Prostatic Neoplasms, Castration-Resistant/drug therapy , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/pathology , Receptors, Androgen/metabolism , Signal Transduction/drug effects , Transcription Factors/antagonists & inhibitors , Transcription Factors/genetics , Transcription Factors/metabolism , Xenograft Model Antitumor Assays
4.
FASEB J ; 38(2): e23442, 2024 02.
Article in English | MEDLINE | ID: mdl-38275103

ABSTRACT

The intramembrane protease γ-secretase has broad physiological functions, but also contributes to Notch-dependent tumors and Alzheimer's disease. While γ-secretase cleaves numerous membrane proteins, only few nonsubstrates are known. Thus, a fundamental open question is how γ-secretase distinguishes substrates from nonsubstrates and whether sequence-based features or post-translational modifications of membrane proteins contribute to substrate recognition. Using mass spectrometry-based proteomics, we identified several type I membrane proteins with short ectodomains that were inefficiently or not cleaved by γ-secretase, including 'pituitary tumor-transforming gene 1-interacting protein' (PTTG1IP). To analyze the mechanism preventing cleavage of these putative nonsubstrates, we used the validated substrate FN14 as a backbone and replaced its transmembrane domain (TMD), where γ-cleavage occurs, with the one of nonsubstrates. Surprisingly, some nonsubstrate TMDs were efficiently cleaved in the FN14 backbone, demonstrating that a cleavable TMD is necessary, but not sufficient for cleavage by γ-secretase. Cleavage efficiencies varied by up to 200-fold. Other TMDs, including that of PTTG1IP, were still barely cleaved within the FN14 backbone. Pharmacological and mutational experiments revealed that the PTTG1IP TMD is palmitoylated, which prevented cleavage by γ-secretase. We conclude that the TMD sequence of a membrane protein and its palmitoylation can be key factors determining substrate recognition and cleavage efficiency by γ-secretase.


Subject(s)
Amyloid Precursor Protein Secretases , Lipoylation , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/metabolism , Membrane Proteins/metabolism , Protein Domains , Protein Processing, Post-Translational , Amyloid beta-Protein Precursor/metabolism
5.
Protein Expr Purif ; 215: 106407, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38000778

ABSTRACT

Cleavage of the transmembrane domain (TMD) of amyloid-ß precursor protein (APP) by γ-secretase, an intramembrane aspartyl protease, generates Aß peptides of various lengths that form plaques in the brains of Alzheimer's disease patients. Although the debate has not been finally resolved whether these plaques trigger the onset of Alzheimer's or are side products, disease-related mutations suggest their implication in the etiology of the dementia. These occur both in presenilin, the catalytic subunit of γ-secretase, and in the TMD of APP. Despite two seminal cryo-electron microscopy structures that show the complex of γ-secretase with its substrates APP and Notch, the mechanism of γ-secretase is not yet fully understood. Especially on which basis it selects its substrates is still an enigma. The presenilin homolog PSH from the archaeon Methanoculleus marisnigri JR1 (MCMJR1) is catalytically active without accessory proteins in contrast to γ-secretase making it an excellent model for studies of the basic cleavage process. We here focused on the cell-free expression of PSH screening a range of conditions. Cleavage assays to verify the activity show that not only the yield, but mainly the activity of the protease depends on the careful selection of expression conditions. Optimal results were found for a cell-free expression at relatively low temperature, 20 °C, employing cell lysates prepared from E. coli Rosetta cells. To speed up protein preparation for immediate functional assays, a crude purification protocol was developed. This allows to produce ready-made PSH in a fast and efficient manner in less than two days.


Subject(s)
Alzheimer Disease , Amyloid Precursor Protein Secretases , Humans , Amyloid Precursor Protein Secretases/genetics , Amyloid Precursor Protein Secretases/chemistry , Amyloid Precursor Protein Secretases/metabolism , Cryoelectron Microscopy , Escherichia coli/genetics , Escherichia coli/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/chemistry , Amyloid beta-Protein Precursor/metabolism , Presenilins/chemistry , Presenilins/metabolism , Alzheimer Disease/genetics , Amyloid beta-Peptides
6.
J Mol Biol ; 435(18): 168218, 2023 09 15.
Article in English | MEDLINE | ID: mdl-37536392

ABSTRACT

The intramembrane protease γ-secretase activates important signaling molecules, such as Notch receptors. It is still unclear, however, how different elements within the primary structure of substrate transmembrane domains (TMDs) contribute to their cleavability. Using a newly developed yeast-based cleavage assay, we identified three crucial regions within the TMDs of the paralogs Notch1 and Notch3 by mutational and gain-of-function approaches. The AAAA or AGAV motifs within the N-terminal half of the TMDs were found to confer strong conformational flexibility to these TMD helices, as determined by mutagenesis coupled to deuterium/hydrogen exchange. Crucial amino acids within the C-terminal half may support substrate docking into the catalytic cleft of presenilin, the enzymatic subunit of γ-secretase. Further, residues close to the C-termini of the TMDs may stabilize a tripartite ß-sheet in the substrate/enzyme complex. NMR structures reveal different extents of helix bending as well as an ability to adopt widely differing conformational substates, depending on the sequence of the N-terminal half. The difference in cleavability between Notch1 and Notch3 TMDs is jointly determined by the conformational repertoires of the TMD helices and the sequences of the C-terminal half, as suggested by mutagenesis and building molecular models. In sum, cleavability of a γ-secretase substrate is enabled by different functions of cooperating TMD regions, which deepens our mechanistic understanding of substrate/non-substrate discrimination in intramembrane proteolysis.


Subject(s)
Amyloid Precursor Protein Secretases , Proteolysis , Amyloid Precursor Protein Secretases/chemistry , Models, Molecular , Mutation , Protein Domains
7.
Sci Rep ; 12(1): 20987, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36470941

ABSTRACT

Signal-Peptide Peptidase Like-3 (SPPL3) is an intramembrane cleaving aspartyl protease that causes secretion of extracellular domains from type-II transmembrane proteins. Numerous Golgi-localized glycosidases and glucosyltransferases have been identified as physiological SPPL3 substrates. By SPPL3 dependent processing, glycan-transferring enzymes are deactivated inside the cell, as their active site-containing domain is cleaved and secreted. Thus, SPPL3 impacts on glycan patterns of many cellular and secreted proteins and can regulate protein glycosylation. However, the characteristics that make a substrate a favourable candidate for SPPL3-dependent cleavage remain unknown. To gain insights into substrate requirements, we investigated the function of a GxxxG motif located in the transmembrane domain of N-acetylglucosaminyltransferase V (GnTV), a well-known SPPL3 substrate. SPPL3-dependent secretion of the substrate's ectodomain was affected by mutations disrupting the GxxxG motif. Using deuterium/hydrogen exchange and NMR spectroscopy, we studied the effect of these mutations on the helix flexibility of the GnTV transmembrane domain and observed that increased flexibility facilitates SPPL3-dependent shedding and vice versa. This study provides first insights into the characteristics of SPPL3 substrates, combining molecular biology, biochemistry, and biophysical techniques and its results will provide the basis for better understanding the characteristics of SPPL3 substrates with implications for the substrates of other intramembrane proteases.


Subject(s)
Aspartic Acid Endopeptidases , Membrane Proteins , Aspartic Acid Endopeptidases/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Golgi Apparatus/metabolism , Glycosylation , Polysaccharides/metabolism
8.
J Biol Chem ; 298(9): 102321, 2022 09.
Article in English | MEDLINE | ID: mdl-35921890

ABSTRACT

The intramembrane protease PARL acts as a crucial mitochondrial safeguard by cleaving the mitophagy regulators PINK1 and PGAM5. Depending on the stress level, PGAM5 can either stimulate cell survival or cell death. In contrast to PINK1, which is constantly cleaved in healthy mitochondria and only active when the inner mitochondrial membrane is depolarized, PGAM5 processing is inversely regulated. However, determinants of PGAM5 that indicate it as a conditional substrate for PARL have not been rigorously investigated, and it is unclear how uncoupling the mitochondrial membrane potential affects its processing compared to that of PINK1. Here, we show that several polar transmembrane residues in PGAM5 distant from the cleavage site serve as determinants for its PARL-catalyzed cleavage. Our NMR analysis indicates that a short N-terminal amphipathic helix, followed by a kink and a C-terminal transmembrane helix harboring the scissile peptide bond are key for a productive interaction with PARL. Furthermore, we also show that PGAM5 is stably inserted into the inner mitochondrial membrane until uncoupling the membrane potential triggers its disassembly into monomers, which are then cleaved by PARL. In conclusion, we propose a model in which PGAM5 is slowly processed by PARL-catalyzed cleavage that is influenced by multiple hierarchical substrate features, including a membrane potential-dependent oligomeric switch.


Subject(s)
Homeostasis , Metalloproteases , Mitochondria , Mitochondrial Proteins , Phosphoprotein Phosphatases , Proteolysis , HeLa Cells , Humans , Metalloproteases/metabolism , Mitochondria/enzymology , Mitochondrial Proteins/metabolism , Peptides/metabolism , Phosphoprotein Phosphatases/metabolism , Protein Kinases/metabolism
9.
ACS Sustain Chem Eng ; 10(31): 10192-10202, 2022 Aug 08.
Article in English | MEDLINE | ID: mdl-35966390

ABSTRACT

Mechanochemical and biocatalytic approaches in modern research are two major assets to develop greener processes. In the present study, these modular tools of sustainability are pointed toward the production of versatile and daily employed compounds such as surfactants. Toward this aim, glycolipids, a class of nonionic surfactants composed of ubiquitous and primary metabolites such as sugar and fatty acid moieties, represent a promising alternative to petroleum-derived surface-active agents. Therefore, the combination of biocatalysis with mechanochemistry aiming at glycolipid synthesis seemed a logical step that was taken in this study for the first time. The monoacylated model compound glucose-6-O-decanoate was synthesized with the help of a bead mill apparatus using two different unconventional dissolved reaction systems, namely, menthol-based hydrophobic deep eutectic solvents and 2-methyl-2-butanol, thus reaching up to 12% yield in the latter based on the conversion of vinyl decanoate, after only 90 min of reaction. In addition, a neat reaction system using an excess of vinylated fatty ester as an adjuvant allowed a 27 mM/h space-time yield. The overall significant increase in productivities, up to 6 times, compared to standard heating and shaking methods, shows the tremendous potential of mechanoenzymatic synthesis.

10.
iScience ; 25(5): 104175, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35479411

ABSTRACT

BAG1 is a family of polypeptides with a conserved C-terminal BAG domain that functions as a nucleotide exchange factor for the molecular chaperone HSP70. BAG1 proteins also control several signaling processes including proteostasis, apoptosis, and transcription. The largest isoform, BAG1L, controls the activity of the androgen receptor (AR) and is upregulated in prostate cancer. Here, we show that BAG1L regulates AR dynamics in the nucleus and its ablation attenuates AR target gene expression especially those involved in oxidative stress and metabolism. We show that a small molecule, A4B17, that targets the BAG domain downregulates AR target genes similar to a complete BAG1L knockout and upregulates the expression of oxidative stress-induced genes involved in cell death. Furthermore, A4B17 outperformed the clinically approved antagonist enzalutamide in inhibiting cell proliferation and prostate tumor development in a mouse xenograft model. BAG1 inhibitors therefore offer unique opportunities for antagonizing AR action and prostate cancer growth.

SELECTION OF CITATIONS
SEARCH DETAIL