Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(9): 11217-11227, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38386424

ABSTRACT

Single particle tracking (SPT) is a powerful technique for real-time microscopic visualization of the movement of individual biomolecules within or on the surface of living cells. However, SPT often suffers from the suboptimal performance of the photon-emitting labels used to tag the biomolecules of interest. For example, fluorescent dyes have poor photostability, while quantum dots suffer from blinking that hampers track acquisition and interpretation. Upconverting nanoparticles (UCNPs) have recently emerged as a promising anti-Stokes luminescent label for SPT. In this work, we demonstrated targeted SPT using UCNPs. For this, we synthesized 30 nm diameter doped UCNPs and coated them with amphiphilic polymers decorated with polyethylene glycol chains to make them water-dispersible and minimize their nonspecific interactions with cells. Coated UCNPs highly homogeneous in brightness (as confirmed by a single particle investigation) were functionalized by immunoglobulin E (IgE) using a biotin-streptavidin strategy. Using these IgE-UCNP SPT labels, we tracked high-affinity IgE receptors (FcεRI) on the membrane of living RBL-2H3 mast cells at 37 °C in the presence and absence of antigen and obtained good agreement with the literature. Moreover, we used the FcεRI-IgE receptor-antibody system to directly compare the performance of UCNP-based SPT labels to organic dyes (AlexaFluor647) and quantum dots (QD655). Due to their photostability as well as their backgroundless and continuous luminescence, SPT trajectories obtained with UCNP labels are no longer limited by the photophysics of the label but only by the dynamics of the system and, in particular, the movement of the label out of the field of view and/or focal plane.


Subject(s)
Nanoparticles , Quantum Dots , Single Molecule Imaging , Nanoparticles/ultrastructure , Luminescence , Immunoglobulin E
2.
Photochem Photobiol Sci ; 18(1): 98-109, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30328457

ABSTRACT

Photodynamic therapy (PDT) is a well-established treatment of cancer in which cell toxic reactive oxygen species, including singlet oxygen (1O2), are produced by a photosensitiser drug following irradiation of a specific wavelength. Visible light is commonly used as the excitation source in PDT, although these wavelengths do have limited tissue penetration. In this research, upconverting nanoparticles (UCNPs) functionalised with the photosensitiser Rose Bengal (RB) have been designed and synthesised for PDT of breast cancer cells. The use of UCNPs shifts the required excitation wavelength for the production of 1O2 to near infrared light (NIR) thus allowing deeper tissue penetration. The system was designed to maximise the production of 1O2via efficient Förster resonance energy transfer (FRET) from the UCNPs to the photosensitiser. Highly luminescent NaYF4:Yb,Er,Gd@NaYF4 core-shell UCNPs were synthesised that exhibited two main anti-Stokes emission bands at 541 and 652 nm following 980 nm irradiation. RB was chosen as the photosensitiser since its absorption band overlaps with the green emission of the UCNPs. To achieve efficient energy transfer from the nanoparticles to the photosensitiser, the functionalised UCNPs included a short l-lysine linker to attach the RB to the nanocore yielding RB-lysine functionalised UCNPs. The efficient FRET from the UCNPs to the RB was confirmed by luminescence lifetime measurements. The light emitted by the UCNPs at 541 nm, following excitation at 980 nm, generates the 1O2via the RB. Multi-photon and confocal laser scanning microscopies confirmed the internalisation of the RB-lysine-UCNPs by SK-BR-3 breast cancer cells. Cell viability studies revealed that the RB-lysine-UCNPs induced low dark toxicity in cells prior to PDT treatment. Importantly, following irradiation at 980 nm, high levels of cell death were observed in cells loaded with the RB-lysine-UCNPs. Cell death following PDT treatment was also confirmed using propidium iodide and confocal microscopy. The high drug loading capacity (160 RB/nanoparticle) of the UCNPs, the efficient FRET from the UCNPs to the photosensitiser, the high level of accumulation inside the cells and their PDT cell kill suggest that the RB-lysine-UCNPs are promising for NIR PDT and hence suitable for the treatment of deep-lying cancer tumours.


Subject(s)
Breast Neoplasms/drug therapy , Fluorescent Dyes/pharmacology , Nanoparticles , Photochemotherapy/methods , Photosensitizing Agents/therapeutic use , Cell Death/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Endocytosis , Female , Fluorescent Dyes/chemistry , Fluorescent Dyes/therapeutic use , Humans , Lysine/chemistry , Lysine/pharmacology , Lysine/therapeutic use , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Rose Bengal/chemistry , Rose Bengal/pharmacology , Rose Bengal/therapeutic use , Singlet Oxygen
3.
Nanoscale ; 10(34): 15904-15910, 2018 Aug 30.
Article in English | MEDLINE | ID: mdl-30106079

ABSTRACT

Single-particle luminescence microscopy is a powerful method to extract information on biological systems that is not accessible by ensemble-level methods. Upconversion nanoparticles (UCNPs) are a particularly promising luminophore for single-particle microscopy as they provide stable, non-blinking luminescence and allow the avoidance of biological autofluorescence by their anti-Stokes emission. Recently, ensemble measurements of diluted aqueous dispersions of UCNPs have shown the instability of luminescence over time due to particle dissolution-related effects. This can be especially detrimental for single-particle experiments. However, this effect has never been estimated at the individual particle level. Here, the luminescence response of individual UCNPs under aqueous conditions is investigated by quantitative wide-field microscopy. The particles exhibit a rapid luminescence loss, accompanied by large changes in spectral response, leading to a considerable heterogeneity in their luminescence and band intensity ratio. Moreover, the dissolution-caused intensity loss is not correlated with the initial particle intensity or band ratio, which makes it virtually unpredictable. These effects and the subsequent development of their heterogeneity can be largely slowed down by adding millimolar concentrations of sodium fluoride in buffer. As a consequence, the presented data indicate that microscopy experiments employing UCNPs in an aqueous environment should be performed under conditions that carefully prevent these effects.

4.
Nanoscale ; 9(33): 11994-12004, 2017 Aug 24.
Article in English | MEDLINE | ID: mdl-28795714

ABSTRACT

Upconverting nanoparticles (UCNPs) are luminophores that have been investigated for a multitude of biological applications, notably low-background imaging, high-sensitivity assays, and cancer theranostics. In these applications, they are frequently used as a donor in resonance energy transfer (RET) pairs. However, because of the peculiarity and non-linearity of their luminescence mechanism, their behavior as a RET pair component has been difficult to predict quantitatively, preventing their optimization for subsequent applications. In this article, we assembled UCNP-organic dye RET systems and investigated their luminescence decays and spectra, with varying UCNP sizes and quantities of dyes grafted onto their surface. We observed an increase in RET efficiency with lower particle sizes and higher dye decoration. We also observed several unexpected effects, notably a quenching of UCNP luminescence bands that are not resonant with the absorption of organic dyes. We proposed a semi-empirical Monte Carlo model for predicting the behavior of UCNP-organic dye systems, and validated it by comparison with our experimental data. These findings will be useful for the development of more accurate UCNP-based assays, sensors, and imaging agents, as well as for optimization of UCNP-organic dye RET systems employed in cancer treatment and theranostics.

5.
Anal Chem ; 89(9): 4868-4874, 2017 05 02.
Article in English | MEDLINE | ID: mdl-28325045

ABSTRACT

Upconversion nanoparticles (UCNPs) are attractive candidates for energy transfer-based analytical applications. In contrast to classical donor-acceptor pairs, these particles contain many emitting lanthanide ions together with numerous acceptor dye molecules at different distances to each other, strongly depending on the particle diameter. UCNPs with precisely controlled sizes between 10 and 43 nm were prepared and functionalized with rose bengal and sulforhodamine B by a ligand-exchange procedure. Time-resolved studies of the upconversion luminescence of the UCNP donor revealed a considerable shortening of the donor lifetime as a clear hint for Förster resonance energy transfer (FRET). FRET was most pronounced for 21 nm-sized UCNPs, yielding a FRET efficiency of 60%. At larger surface-to-volume ratios, the FRET efficiency decreased by an increasing competition of nonradiative surface deactivation. Such dye-UCNP architectures can also provide an elegant way to shift the UCNP emission color, since the fluorescence intensity of the organic dyes excited by FRET was comparable to that of the upconversion emission of smaller particles.

6.
Anal Chem ; 88(3): 1835-41, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26704024

ABSTRACT

An upconversion laser scanner has been optimized to exploit the advantages of photon-upconverting nanoparticles (UCNPs) for background-free imaging on a macroscopic scale. A collimated 980 nm laser beam afforded high local excitation densities to account for the nonlinear luminescence response of UCNPs. As few as 2000 nanoparticles were detectable, and the linear dynamic range covered more than 5 orders of magnitude, which is essentially impossible by using conventional fluorescent dyes. UCNPs covered by a dye-doped silica shell were separated by agarose gel electrophoresis and scanned by a conventional fluorescence scanner as well as the upconversion scanner. Both optical labels could be detected independently. Finally, upconversion images of lateral flow test strips were recorded to facilitate the sensitive and quantitative detection of disease markers. A marker for the parasitic worm Schistosoma was used in this study.


Subject(s)
Antigens, Helminth/analysis , Glycoproteins/analysis , Helminth Proteins/analysis , Lasers , Nanoparticles/chemistry , Photons , Schistosoma/chemistry , Animals , Luminescence
7.
Nanoscale ; 7(4): 1403-10, 2015 Jan 28.
Article in English | MEDLINE | ID: mdl-25503253

ABSTRACT

We present a systematic study on the effect of surface ligands on the luminescence properties and colloidal stability of ß-NaYF4:Yb(3+),Er(3+) upconversion nanoparticles (UCNPs), comparing nine different surface coatings to render these UCNPs water-dispersible and bioconjugatable. A prerequisite for this study was a large-scale synthetic method that yields ∼2 g per batch of monodisperse oleate-capped UCNPs providing identical core particles. These ∼23 nm sized UCNPs display an upconversion quantum yield of ∼0.35% when dispersed in cyclohexane and excited with a power density of 150 W cm(-2), underlining their high quality. A comparison of the colloidal stability and luminescence properties of these UCNPs, subsequently surface modified with ligand exchange or encapsulation protocols, revealed that the ratio of the green (545 nm) and red (658 nm) emission bands determined at a constant excitation power density clearly depends on the surface chemistry. Modifications relying on the deposition of additional (amphiphilic) layer coatings, where the initial oleate coating is retained, show reduced non-radiative quenching by water as compared to UCNPs that are rendered water-dispersible via ligand exchange. Moreover, we could demonstrate that the brightness of the upconversion luminescence of the UCNPs is strongly affected by the type of surface modification, i.e., ligand exchange or encapsulation, yet hardly by the chemical nature of the ligand.

8.
Acc Chem Res ; 47(12): 3481-93, 2014 Dec 16.
Article in English | MEDLINE | ID: mdl-25347798

ABSTRACT

CONSPECTUS: Photon upconversion nanoparticles (UCNPs) have emerged as a promising new class of nanomaterials due to their ability to convert near-IR light into visible luminescence. Unfortunately, most efficient methods for preparing UCNPs yield hydrophobic materials, but water-dispersibility is needed in the major fields of applications of UCNPs, that is, in bioimaging, labeling, and bioassays. Numerous methods therefore have been reported in the past years to convert the hydrophobic surface of UCNPs to a more hydrophilic one so to render them dispersible in aqueous systems. We present a classification respective for these strategies and assess the main methods. These include (A) chemical modification of the hydrophobic (typically oleate) ligand on the surface, (B) addition of an extra layer, (C) addition of a thin shell on top of the UCNP, and (D) complete replacement of the original ligand by another one. Chemical modification (A) involves oxidation of the oleate or oleylamine and leads to particles with terminal oxygen functions. This method is less often used because solutions of the resulting UCNPs in water have limited colloidal stability, protocols are time-consuming and often give low yields, and only a limited number of functional groups can be introduced. Methods B and C involve coating of UCNPs with amphiphiles or with shells made from silica oxide, titanium oxide, or metallic gold or silver. These methods are quite versatile in terms of further modifications, for example, by further cross-linking or by applying thiol-gold chemistry. Growing an extra shell is, however, often accompanied by a higher polydispersity. Method D can be divided into subgroups based on either (i) the direct (single-step) replacement of the native ligand by a new ligand or (ii) two-step protocols using nitrosyltetrafluoroborate (NOBF4) or strong acids as reagents to produce ligand-free UCNPs prior to the attachment of a new ligand. These methods are simple and versatile, and the distance between the new ligand and the luminescent particle can be well controlled. However, the particles often have limited stability in buffer systems. The methods described also are of wider interest because they are likely to be applicable to other kinds of nanomaterials. We additionally address the need for (a) a better control of particle size and homogeneity during synthesis, (b) more reproducible methods for surface loading and modification, (c) synthetic methods giving higher yields of UCNPs, (d) materials displaying higher quantum yields in water solution without the need for tedious surface modifications, (e) improved methods for workup (including the suppression of aggregation), (f) new methods for surface characterization, and (g) more affordable reagents for use in surface modification. It is noted that most synthetic research in the area is of the trial-and-error kind, presumably due to the lack of understanding of the mechanisms causing current limitations. Finally, all particles are discussed in terms of their biocompatibility (as far as data are available), which is quintessential in terms of imaging, the largest field of application.

SELECTION OF CITATIONS
SEARCH DETAIL
...