Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 922: 171157, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38412879

ABSTRACT

Throughout history, humans have relied on wood for constructions, tool production or as an energy source. How and to what extent these human activities have impacted plant abundance and composition over a long-term perspective is, however, not well known. To address this knowledge gap, we combined 44,239 precisely dated tree-ring samples from economically and ecologically important tree species (spruce, fir, pine, oak) from historical buildings, and pollen-based plant cover estimates using the REVEALS model from 169 records for a total of 34 1° × 1° grid cells for Central Europe. Building activity and REVEALS estimates were compared for the entire study region (4-15°E, 46-51°N), and for low (<500 m asl) and mid/high elevations (≥500 m asl) in 100-year time windows over the period 1150-1850. Spruce and oak were more widely used in wooden constructions, amounting to 35 % and 32 %, respectively, compared to pine and fir. Besides wood properties and species abundance, tree diameters of harvested individuals, being similar for all four species, were found to be the most crucial criterion for timber selection throughout the last millennium. Regarding land use changes, from the 1150-1250's onwards, forest cover generally decreased due to deforestation until 1850, especially at lower elevations, resulting in a more heterogeneous landscape. The period 1650-1750 marks a distinct change in the environmental history of Central Europe; increasing agriculture and intense forest management practices were introduced to meet the high demands of an increasing population and intensifying industrialization, causing a decrease in palynological diversity, especially at low elevations. Likely the characteristic vegetation structure and composition of contemporary landscapes originated from that period. We further show that land use has impacted vegetation composition and diversity at an increasing speed leading to a general homogenization of landscapes through time, highlighting the limited environmental benefits of even-aged plantation forestry.


Subject(s)
Forests , Pinus , Humans , Aged , Europe , Wood , Pollen , Forestry , Conservation of Natural Resources
2.
Sci Rep ; 10(1): 21832, 2020 12 11.
Article in English | MEDLINE | ID: mdl-33311544

ABSTRACT

To satisfy the increasing demand for wood in central Europe during medieval times, a new system of forest management was developed, one far superior to simple coppicing. The adoption of a sophisticated, Coppice-with-Standards (CWS) management practice created a two-storey forest structure that could provide fuelwood as well as construction timber. Here we present a dendrochronological study of actively managed CWS forests in northern Bavaria to detect the radial growth response to cyclical understorey harvesting in overstorey oaks (Quercus sp.), so-called standards. All modern standards exhibit rapid growth releases every circa 30 years, most likely caused by regular understorey management. We further analyse tree-ring width patterns in 2120 oak timbers from historical buildings and archaeological excavations in southern Germany and north-eastern France, dating between 300 and 2015 CE, and succeeded in identifying CWS growth patterns throughout the medieval period. Several potential CWS standards even date to the first millennium CE, suggesting CWS management has been in practice long before its first mention in historical documents. Our dendrochronological approach should be expanded routinely to indentify the signature of past forest management practices in archaeological and historical oak wood.

3.
Sci Rep ; 10(1): 16284, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33004966

ABSTRACT

Hydroclimate, the interplay of moisture supply and evaporative demand, is essential for ecological and agricultural systems. The understanding of long-term hydroclimate changes is, however, limited because instrumental measurements are inadequate in length to capture the full range of precipitation and temperature variability and by the uneven distribution of high-resolution proxy records in space and time. Here, we present a tree-ring-based reconstruction of interannual to centennial-scale groundwater level (GWL) fluctuations for south-western Germany and north-eastern France. Continuously covering the period of 265-2017 CE, our new record from the Upper Rhine Valley shows that the warm periods during late Roman, medieval and recent times were characterized by higher GWLs. Lower GWLs were found during the cold periods of the Late Antique Little Ice Age (LALIA; 536 to ~ 660 CE) and the Little Ice Age (LIA; between medieval and recent warming). The reconstructed GWL fluctuations are in agreement with multidecadal North Atlantic climate variability derived from independent proxies. Warm and wet hydroclimate conditions are found during warm states of the Atlantic Ocean and positive phases of the North Atlantic Oscillation on decadal scales.

SELECTION OF CITATIONS
SEARCH DETAIL
...