Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Nanomedicine ; 61: 102771, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38960366

ABSTRACT

Nucleic acid biomarker detection has great importance in the diagnosis of disease, the monitoring of disease progression and the classification of patients according to treatment decision making. Nucleic acid biomarkers found in the blood of patients have generated a lot of interest due to the possibility of being detected non-invasively which makes them ideal for monitoring and screening tests and particularly amenable to point-of-care (POC) or self-testing. A major challenge to POC molecular diagnostics is the need to enrich the target to optimise detection. In this work, we describe a microfabricated device for the enrichment of short dsDNA target sequences, which is especially valuable for potential detection methods, as it improves the probability of effectively detecting the target in downstream analyses. The device integrated a heating element and a temperature sensor with a microfluidic chamber to carry out the denaturation of the dsDNA combined with blocking-probes to enrich the target. This procedure was validated by fluorescence resonance energy transfer (FRET) technique, labelling DNA with a fluorophore and a quencher. As proof of concept, a 23-mer long dsDNA sequence corresponding to the L858R mutation of the EGFR gene was used. The qualitative results obtained determined that the most optimal blocking rate was obtained with the incorporation of 11/12-mer blocking-probes at a total concentration of 6 µM. This device is a powerful DNA preparation tool, which is an indispensable initial step for subsequent detection of sequences via nucleic acid hybridisation methods.

2.
Biotechnol J ; 18(7): e2300004, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37100765

ABSTRACT

The development of functional blood vessels is today a fundamental pillar in the evaluation of new therapies and diagnostic agents. This article describes the manufacture and subsequent functionalization, by means of cell culture, of a microfluidic device with a circular section. Its purpose is to simulate a blood vessel in order to test new treatments for pulmonary arterial hypertension. The manufacture was carried out using a process in which a wire with a circular section determines the dimensions of the channel. To fabricate the blood vessel, cells were seeded under rotary cell culture to obtain a homogeneous cell seeding in the inner wall of the devices. This is a simple and reproducible method that allows the generation of blood vessel models in vitro.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Cell Culture Techniques
3.
Bioengineering (Basel) ; 10(2)2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36829677

ABSTRACT

Post-surgical chemotherapy in pancreatic cancer has notorious side effects due to the high dose required. Multiple devices have been designed to tackle this aspect and achieve a delayed drug release. This study aimed to explore the controlled and sustained local delivery of a reduced drug dose from an irinotecan-loaded electrospun nanofiber membrane (named TARTESSUS) that can be placed on the patients' tissue after tumor resection surgery. The drug delivery system formulation was made of polycaprolactone (PCL). The mechanical properties and the release kinetics of the drug were adjusted by the electrospinning parameters and by the polymer ratio between 10 w.t.% and 14 w.t.% of PCL in formic acid:acetic acid:chloroform (47.5:47.5:5). The irinotecan release analysis was performed and three different release periods were obtained, depending on the concentration of the polymer in the dissolution. The TARTESSUS device was tested in 2D and 3D cell cultures and it demonstrated a decrease in cell viability in 2D culture between 72 h and day 7 from the start of treatment. In 3D culture, a decrease in viability was seen between 72 h, day 7 (p < 0.001), day 10 (p < 0.001), 14 (p < 0.001), and day 17 (p = 0.003) as well as a decrease in proliferation between 72 h and day 10 (p = 0.030) and a reduction in spheroid size during days 10 (p = 0.001), 14 (p < 0.001), and 17 (p < 0.001). In conclusion, TARTESSUS showed a successful encapsulation of a chemotherapeutic drug and a sustained and delayed release with an adjustable releasing period to optimize the therapeutic effect in pancreatic cancer treatment.

4.
Nanomedicine ; 39: 102462, 2022 01.
Article in English | MEDLINE | ID: mdl-34592426

ABSTRACT

Mimicking the diffusion that drugs suffer through different body tissues before reaching their target is a challenge. In this work, a versatile membrane-based microfluidic platform was developed to allow for the identification of drugs that would keep their cytotoxic properties after diffusing through such a barrier. As an application case, this paper reports on a microfluidic device capable of mimicking the diffusion that free or encapsulated anticancer drugs would suffer in the intestine before reaching the bloodstream. It not only presents the successful fabrication results for the platform but also demonstrates the significant effect that the analyzed drugs have over the viability of osteosarcoma cells. This intestine-like microfluidic platform works as a tool to allow for the identification of drugs whose cytotoxic performance remains effective enough once they enter the bloodstream. Therefore, it allows for the prediction of the best treatment available for each patient in the battle against cancer.


Subject(s)
Antineoplastic Agents , Microfluidic Analytical Techniques , Neoplasms , Antineoplastic Agents/pharmacology , Diffusion , Humans , Lab-On-A-Chip Devices , Microfluidics/methods
5.
Bioengineering (Basel) ; 8(6)2021 Jun 04.
Article in English | MEDLINE | ID: mdl-34199965

ABSTRACT

The use of lipid nanoparticles as biodegradable shells for controlled drug delivery shows promise as a more effective and targeted tumor treatment than traditional treatment methods. Although the combination of target therapy with nanotechnology created new hope for cancer treatment, methodological issues during in vitro validation of nanovehicles slowed their application. In the current work, the effect of methotrexate (MTX) encapsulated in different matrices was evaluated in a dynamic microfluidic platform. Effects on the viability of osteosarcoma cells in the presence of recirculation of cell media, free MTX and two types of blank and drug-containing nanoparticles were successfully assessed in different tumor-mimicking microenvironments. Encapsulated MTX was more effective than the equal dose free drug treatment, as cell death significantly increased under the recirculation of both types of drug-loaded nanoparticles in all concentrations. In fact, MTX-nanoparticles reduced cell population 50 times more than the free drug when 150-µM drug dose was recirculated. Moreover, when compared to the equivalent free drug dose recirculation, cell number was reduced 60 and 100 points more under recirculation of each nanoparticle with a 15-µM drug concentration. Thus, the results obtained with the microfluidic model present MTX-lipid nanoparticles as a promising and more effective therapy for pediatric osteosarcoma treatment than current treatment options.

6.
Biomicrofluidics ; 13(4): 044105, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31372193

ABSTRACT

Highly migratory cancer cells often lead to metastasis and recurrence and are responsible for the high mortality rates in many cancers despite aggressive treatment. Recently, the migratory behavior of patient-derived glioblastoma multiforme cells on microtracks has shown potential in predicting the likelihood of recurrence, while at the same time, antimetastasis drugs have been developed which require simple yet relevant high-throughput screening systems. However, robust in vitro platforms which can reliably seed single cells and measure their migration while mimicking the physiological tumor microenvironment have not been demonstrated. In this study, we demonstrate a microfluidic device which hydrodynamically seeds single cancer cells onto stamped or femtosecond laser ablated polystyrene microtracks, promoting 1D migratory behavior due to the cells' tendency to follow topographical cues. Using time-lapse microscopy, we found that single U87 glioblastoma multiforme cells migrated more slowly on laser ablated microtracks compared to stamped microtracks of equal width and spacing (p < 0.05) and exhibited greater directional persistence on both 1D patterns compared to flat polystyrene (p < 0.05). Single-cell morphologies also differed significantly between flat and 1D patterns, with cells on 1D substrates exhibiting higher aspect ratios and less circularity (p < 0.05). This microfluidic platform could lead to automated quantification of single-cell migratory behavior due to the high predictability of hydrodynamic seeding and guided 1D migration, an important step to realizing the potential of microfluidic migration assays for drug screening and individualized medicine.

7.
Biosens Bioelectron ; 123: 237-243, 2019 Jan 01.
Article in English | MEDLINE | ID: mdl-30224287

ABSTRACT

Development of new targeted therapies is a challenge in the battle against cancer. Although a variety of treatments is currently available, there is no technique for rapidly evaluating the response of cancer patients to the drug. In this work, a microfluidic platform for the real-time simultaneous analysis of the success rate of different nanoparticle based chemotherapeutic drugs is presented. Based on a previous planar chamber and a reported sensitivity enhancing strategy, linear and cross shape microstructures were integrated into the chamber dome of the microfluidic polydimethylsiloxane and glass platform in order to provide a higher fluid mixing and treatment-cell interaction. Several methotrexate (MTX) based treatments (free MTX, MTX loaded Lecithin-PVA nanoparticles, MTX loaded Lecithin-Tween 80 nanoparticles) as well as their respective controls (cell media and both blank nanoparticles) were recirculated through the microchamber over an osteosarcoma cell monolayer. These nanovehicles reduced cell population to less than 20% (LEC-PVA nanoparticles) and 2.3% (LEC-Tween nanoparticles), demonstrating that nanoparticles are a promising target therapy for cancer treatment. Moreover, microstructured platforms demonstrated a higher efficacy in the drug-screening process: due to the liquid folding a higher amount of nanoparticles was internalized by the cells and, therefore, results were observed faster. In fact, the time required to reduce cell viability to the half was nearly a 75% faster. Furthermore, this microfluidic platform offers the capability to test up to five different drugs simultaneously, making it a powerful tool to evaluate the effect of multiple drugs and determine the most effective and personalized treatment.


Subject(s)
Biosensing Techniques , Drug Evaluation, Preclinical/methods , Microfluidics/methods , Neoplasms/drug therapy , Cell Line, Tumor , Cell Survival/drug effects , Humans , Methotrexate/pharmacology , Methotrexate/therapeutic use , Nanoparticles/chemistry , Precision Medicine
8.
PLoS One ; 12(2): e0171417, 2017.
Article in English | MEDLINE | ID: mdl-28166248

ABSTRACT

Microfluidic devices are becoming mainstream tools to recapitulate in vitro the behavior of cells and tissues. In this study, we use microfluidic devices filled with hydrogels of mixed collagen-Matrigel composition to study the migration of lung cancer cells under different cancer invasion microenvironments. We present the design of the microfluidic device, characterize the hydrogels morphologically and mechanically and use quantitative image analysis to measure the migration of H1299 lung adenocarcinoma cancer cells in different experimental conditions. Our results show the plasticity of lung cancer cell migration, which turns from mesenchymal in collagen only matrices, to lobopodial in collagen-Matrigel matrices that approximate the interface between a disrupted basement membrane and the underlying connective tissue. Our quantification of migration speed confirms a biphasic role of Matrigel. At low concentration, Matrigel facilitates migration, most probably by providing a supportive and growth factor retaining environment. At high concentration, Matrigel slows down migration, possibly due excessive attachment. Finally, we show that antibody-based integrin blockade promotes a change in migration phenotype from mesenchymal or lobopodial to amoeboid and analyze the effect of this change in migration dynamics, in regards to the structure of the matrix. In summary, we describe and characterize a robust microfluidic platform and a set of software tools that can be used to study lung cancer cell migration under different microenvironments and experimental conditions. This platform could be used in future studies, thus benefitting from the advantages introduced by microfluidic devices: precise control of the environment, excellent optical properties, parallelization for high throughput studies and efficient use of therapeutic drugs.


Subject(s)
Cell Movement , Collagen , Laminin , Microfluidics , Proteoglycans , Tissue Scaffolds , Cell Line, Tumor , Collagen/chemistry , Collagen/ultrastructure , Diffusion , Drug Combinations , Extracellular Matrix , Humans , Hydrogels , Laminin/chemistry , Laminin/ultrastructure , Mechanical Phenomena , Microfluidics/methods , Microscopy, Confocal , Neoplasm Metastasis , Phenotype , Proteoglycans/chemistry , Proteoglycans/ultrastructure , Spheroids, Cellular , Tissue Scaffolds/chemistry , Tumor Cells, Cultured , Tumor Microenvironment
9.
Analyst ; 140(2): 654-60, 2015 Jan 21.
Article in English | MEDLINE | ID: mdl-25431806

ABSTRACT

This paper describes the design, implementation and validation of a sensitive and integral technology solution for endotoxin detection. The unified and portable platform is based on the electrochemical detection of endotoxins using a synthetic peptide immobilized on a thin-film biosensor. The work covers the fabrication of an optimized sensor, the biofunctionalization protocol and the design and implementation of the measuring and signalling elements (a microfluidic chamber and a portable potentiostat-galvanostat), framed ad hoc for this specific application. The use of thin-film technologies to fabricate the biosensing device and the application of simple immobilization and detection methods enable a rapid, easy and sensitive technique for in situ and real time LPS detection.


Subject(s)
Biosensing Techniques/methods , Electrochemical Techniques/methods , Lipopolysaccharides/analysis , Electrodes , Escherichia coli/pathogenicity , Microfluidic Analytical Techniques/methods
SELECTION OF CITATIONS
SEARCH DETAIL