Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 126(24): 244711, 2007 Jun 28.
Article in English | MEDLINE | ID: mdl-17614581

ABSTRACT

The authors present the results of a morphological study of solid ammonia using both Fourier-transform infrared and vacuum ultraviolet (VUV) spectroscopy. Dramatic changes in the VUV and infrared spectra at temperatures between 65 and 85 K provide a deeper insight into the structure of ammonia ice particularly with the observation of an exciton transition at 194 nm (6.39 eV) in the VUV spectrum, revealing a structure that is composed of crystallites. A complementary structure is observed in the IR spectrum at 1100 cm(-1) which is assigned to the symmetric deformation of ammonia molecules at the surfaces of the crystallites. Such spectral signatures may be used to identify the environment within which the ammonia ice is formed and provide a new route for obtaining information on the physical and chemical conditions occurring within the interstellar medium, on the surfaces of planetary bodies, and in Kuiper belt objects.

2.
Phys Chem Chem Phys ; 9(22): 2886-93, 2007 Jun 14.
Article in English | MEDLINE | ID: mdl-17538734

ABSTRACT

In this paper we report the results of the first experimental study of the irradiation of low temperature water ice (30 and 90 K) using low energy (4 keV) 13C+ and 13C2+ ions. 13CO(2) and H2O(2) were readily formed within the H2O ice with the product yield and growth rate observed to be highly dependent on both the sample temperature and ion charge state.


Subject(s)
Heavy Ions , Ice , Models, Chemical , Models, Molecular , Carbon Isotopes/chemistry , Computer Simulation , Dose-Response Relationship, Radiation , Linear Energy Transfer , Radiation Dosage
3.
Faraday Discuss ; 133: 311-29; discussion 347-74, 449-52, 2006.
Article in English | MEDLINE | ID: mdl-17191455

ABSTRACT

In order to understand much of the chemistry that underpins astronomical phenomena (e.g. star and planet formation) it is essential to probe the physico-chemistry of ice surfaces under astronomical conditions. The physical properties and chemical reactivity of such icy surfaces depends upon its morphology. Thus it is necessary to explore how the morphology of astrochemical ices is influenced by their local environment (e.g. temperature and pressure) and the mechanisms by which they are processed. In this paper we report the results of a series of experiments to explore the morphology of a variety of molecular ices using VUV spectroscopy. Spectral signatures are found that may allow the morphology of such ices to be identified.

SELECTION OF CITATIONS
SEARCH DETAIL
...