Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Front Biosci (Elite Ed) ; 16(1): 4, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38538523

ABSTRACT

Elevated concentrations of toxic organic compounds observed in food products pose serious dangers to human health. Both natural and artificial pollutants can cause food contamination. The stages of food production, packaging, transportation, and storage can also largely cause the appearance of undesirable substances in food products. The health consequences of ingesting food containing toxic contaminants range from mild gastroenteritis to deaths resulting from dysfunctional internal organs and neurological syndromes. The World Health Organization (WHO) sets recommendations for the content of such chemicals in food, including a minimum allowable concentration considered safe for human consumption. However, the control of food products from chemical pollutants is necessary. Moreover, fast, sensitive, and inexpensive methods are needed to detect them at the point of need. Currently, immune analysis methods are most widely used to determine pollutants in food. The development of fluorescence polarization immunoassay (FPIA) methods in a competitive format is a powerful and modern tool for detecting organic molecules in various matrices, thereby making FPIA methods useful for food safety applications. Due to the availability of portable devices for measuring the fluorescence polarization signal, FPIA methods can be used at the point of need. The variety of fluorescent labels and recognizing elements (receptors, monoclonal and polyclonal antibodies, and nanobodies) permits fluorescence polarization (FP) assays to detect significantly lower limits of organic substances. The FP assay is a homogeneous, fast, and quantitative method. The development of various formats of FP assays makes them promising in determining food pollutants. This review summarizes publications on FP analyses for detecting organic contaminants (pesticides, hormones, toxins, antibiotics, and other pharmaceuticals) in food products during 2018-2023. Further, it demonstrates the prospects for using this method to determine pollutants at the point of need and for detecting high molecular weight substances, fungi, and bacterial infections during food safety inspections.


Subject(s)
Environmental Pollutants , Food Safety , Humans , Fluorescence Polarization Immunoassay/methods , Fluorescence Polarization , Antibodies
2.
Biomolecules ; 14(2)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38397407

ABSTRACT

Lysozyme is a well-known enzyme found in many biological fluids which plays an important role in the antibacterial protection of humans and animals. Lysozyme assays are used for the diagnosis of a number of diseases and utilized in immunohistochemistry, genetic and cellular engineering studies. The assaying methods are divided into two categories measuring either the concentration of lysozyme as a protein or its activity as an enzyme. While the first category of methods traditionally uses an enzyme-linked immunosorbent assay (ELISA), the methods for the determination of the enzymatic activity of lysozyme use either live bacteria, which is rather inconvenient, or natural peptidoglycans of high heterogeneity and variability, which leads to the low reproducibility of the assay results. In this work, we propose the use of a chemically synthesized substrate of a strictly defined structure to measure in a single experiment both the concentration of lysozyme as a protein and its enzymatic activity by means of the fluorescence polarization (FP) method. Chito-oligosaccharides of different chain lengths were fluorescently labeled and tested leading to the selection of the pentasaccharide as the optimal size tracer and the further optimization of the assay conditions for the accurate (detection limit 0.3 µM) and rapid (<30 min) determination of human lysozyme. The proposed protocol was applied to assay human lysozyme in tear samples and resulted in good correlation with the reference assay. The use of synthetic fluorescently labeled tracer, in contrast to natural peptidoglycan, in FP analysis allows for the development of a reproducible method for the determination of lysozyme activity.


Subject(s)
Chitosan , Muramidase , Oligosaccharides , Animals , Humans , Chitosan/chemistry , Indicators and Reagents/chemistry , Muramidase/analysis , Oligosaccharides/chemistry , Reproducibility of Results
3.
Biosensors (Basel) ; 13(12)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38131765

ABSTRACT

Dibutyl phthalate (DBP) is widely used as a plasticizer in the production of polymeric materials to give them flexibility, strength and extensibility. However, due to its negative impact on human health, in particular reproductive functions and fetal development, the content of DBP must be controlled in food and the environment. The present study aims to develop a sensitive, fast and simple fluorescence polarization immunoassay (FPIA) using monoclonal antibodies derived against DBP (MAb-DBP) for its detection in open waters. New conjugates of DBP with various fluorescein derivatives were obtained and characterized: 5-aminomethylfluorescein (AMF) and dichlorotriazinylaminofluorescein (DTAF). The advantages of using the DBP-AMF conjugate in the FPIA method are shown, the kinetics of binding of this chemical with antibodies are studied, the analysis is optimized, and the concentration of monoclonal antibodies is selected for sensitivity analysis-16 nM. The calibration dependence of the fluorescence polarization signal for the detection of DBP was obtained. The observed IC50 (DBP concentration at which a 50% decrease in the fluorescence polarization signal occurs, 40 ng/mL) and the limit of detection (LOD, 7.5 ng/mL) values were improved by a factor of 45 over the previously described FPIA using polyclonal antibodies. This technique was tested by the recovery method, and the high percentage of DBP discovery in water ranged from 85 to 110%. Using the developed method, real water samples from Lake Onega were tested, and a good correlation was shown between the results of the determination of DBP by the FPIA method and GC-MS. Thus, the FPIA method developed in this work can be used to determine DBP in open-water reservoirs.


Subject(s)
Dibutyl Phthalate , Water , Humans , Dibutyl Phthalate/analysis , Fluorescence Polarization Immunoassay/methods , Antibodies, Monoclonal , Gas Chromatography-Mass Spectrometry
4.
Biosensors (Basel) ; 13(4)2023 Apr 16.
Article in English | MEDLINE | ID: mdl-37185552

ABSTRACT

In this study, a homogeneous fluorescence polarization immunoassay (FPIA) for the detection of hazardous aquatic toxin okadaic acid (OA) contaminating environmental waters was for the first time developed. A conjugate of the analyte with a fluorophore based on a fluorescein derivative (tracer) was synthesized, and its interaction with specific anti-OA monoclonal antibodies (MAbs) was tested. A MAbs-tracer pair demonstrated highly affine immune binding (KD = 0.8 nM). Under optimal conditions, the limit of OA detection in the FPIA was 0.08 ng/mL (0.1 nM), and the working range of detectable concentrations was 0.4-72.5 ng/mL (0.5-90 nM). The developed FPIA was approbated for the determination of OA in real matrices: river water and seawater samples. No matrix effect of water was observed; therefore, no sample preparation was required before analysis. Due to this factor, the entire analytical procedure took less than 10 min. Using a compact portable fluorescence polarization analyzer enables the on-site testing of water samples. The developed analysis is very fast, easy to operate, and sensitive and can be extended to the determination of other aquatic toxins or low-molecular-weight water or food contaminants.


Subject(s)
Antibodies, Monoclonal , Water , Fluorescence Polarization Immunoassay/methods , Okadaic Acid , Fluorescein
5.
J Thromb Haemost ; 21(4): 1043-1054, 2023 04.
Article in English | MEDLINE | ID: mdl-36759279

ABSTRACT

Fibrinolysis is a series of enzymatic reactions that degrade insoluble fibrin. Plasminogen activators convert the zymogen plasminogen to the active serine protease plasmin, which cleaves and solubilizes crosslinked fibrin clots into fibrin degradation products. The quantity and quality of fibrinolytic enzymes, their respective inhibitors, and clot structure determine overall fibrinolysis. The quantity of protein can be measured by antigen-based assays, and both quantity and quality can be assessed using functional assays. Furthermore, variations of commonly used assays have been reported, which are tailored to address the role(s) of specific fibrinolytic factors and cellular elements (eg, platelets, neutrophils, and red blood cells). Although the concentration and/or activity of a protein can be quantified, how these individual components contribute to the overall fibrinolysis outcome can be challenging to determine. This difficulty is due to temporal changes within and around the thrombi during the clot breakdown, particularly the fibrin matrix structure, and composition. Furthermore, terms such as "fibrinolytic activity/potential," "plasminogen activation," and "plasmin activity" are often used interchangeably despite having different definitions. The purpose of this review is to 1) summarize the assays measuring fibrinolysis activity and potential, 2) facilitate the interpretation of data generated by these assays, and 3) summarize the strengths and limitations of these assays.


Subject(s)
Fibrinolysis , Thrombosis , Humans , Fibrinolysis/physiology , Fibrinolysin/metabolism , Plasminogen/metabolism , Fibrin/metabolism , Serine Proteases , Communication
6.
Int J Mol Sci ; 23(23)2022 Nov 24.
Article in English | MEDLINE | ID: mdl-36499006

ABSTRACT

We have recently shown that the periventricular nucleus (PeVN) of adult rats is a "mixed dopaminergic (DAergic) center" containing three thousand neurons: DAergic neurons and those expressing one of the dopamine (DA)-synthesizing enzymes. This study aims to evaluate the development of the PeVN as a mixed DAergic center in rats in the perinatal period, critical for brain morphogenesis. During this period, the PeVN contains DAergic neurons and monoenzymatic neurons expressing individual enzymes of DA synthesis: tyrosine hydroxylase (TH) or aromatic L-amino acid decarboxylase (AADC). In the perinatal period, the total number of such neurons triples, mainly due to monoenzymatic neurons; the content of L-DOPA, the end product of monoenzymatic TH neurons, doubles; and the content of DA, the end product of monoenzymatic AADC neurons and DAergic neurons, increases sixfold. Confocal microscopy has shown that, in the PeVN, all types of neurons and their processes are in close relationships, which suggests their mutual regulation by L-DOPA and DA. In addition, monoenzymatic and DAergic fibers are close to the third cerebral ventricle, located in the subependymal zone, between ependymal cells and in the supraependymal zone. These observations suggest that these fibers deliver L-DOPA and DA to the cerebrospinal fluid, participating in the neuroendocrine regulation of the brain.


Subject(s)
Dopamine , Levodopa , Pregnancy , Female , Animals , Rats , Arcuate Nucleus of Hypothalamus/metabolism , Tyrosine 3-Monooxygenase/metabolism , Brain/metabolism , Dopaminergic Neurons/metabolism
7.
Int J Mol Sci ; 23(12)2022 Jun 16.
Article in English | MEDLINE | ID: mdl-35743179

ABSTRACT

Since the 1980s, the concept of dopamine-rich brain centers as clusters of only dopaminergic neurons has been fundamentally revised. It has been shown that, in addition to dopaminergic neurons, most of these centers contain neurons expressing one of the enzymes of dopamine synthesis: tyrosine hydroxylase (TH) or aromatic L-amino acid decarboxylase (AADC). We have obtained convincing evidence that in rats, the hypothalamic periventricular nucleus (PeVN) is one of the largest dopamine-rich centers, containing dopaminergic and monoenzymatic neurons. Indeed, using double immunostaining for TH and AADC, the PeVN was shown to contain almost three thousand dopaminergic and monoenzymatic neurons. According to high-performance liquid chromatography, PeVN contains L-DOPA and dopamine, which, apparently, are synthesized in monoenzymatic TH neurons and bienzymatic neurons, respectively. According to confocal microscopy, neurons (cell bodies, fibers), which were immunopositive only to TH, only to AADC, or both, are in close topographic relationships with each other and with the 3rd ventricle. These data suggest the mutual regulation of the neurons, as well as the delivery of dopamine and L-DOPA to the third ventricle, which is confirmed by their detection in the cerebrospinal fluid. Thus, evidence has been obtained that PeVN is one of the largest dopamine-rich centers of the brain, containing dopaminergic and monoenzymatic neurons.


Subject(s)
Dopamine , Levodopa , Animals , Arcuate Nucleus of Hypothalamus/metabolism , Brain/metabolism , Dopaminergic Neurons/metabolism , Rats , Tyrosine 3-Monooxygenase/metabolism
8.
Food Chem ; 360: 130020, 2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34000636

ABSTRACT

Peptides obtained from phage display libraries are valuable reagents for small-molecule immunoassays. However, their application in fluorescence polarization immunoassays (FPIAs) is limited by phage particles. Here, monomer, dendrimer-like dimer, tetramer peptidomimetic and anti-immunocomplex tracers were designed and synthesized using lysine as special scaffolds and spacers to develop competitive and noncompetitive FPIAs for benzothiostrobin. The affinity between tracers and monoclonal antibodies or immunocomplexes increased with the tracer valence. A higher signal-to-noise ratio and sensitivity could be generated in the FPIAs based on tetramer tracers. The sensitivities of competitive (50% inhibitory concentration) and noncompetitive (50% saturation concentration) FPIAs were 19.71 ± 4.65 and 40.43 ± 2.73 ng mL-1, respectively. The spiked recoveries were 78.3%-105.2% with relative standard deviations (RSDs) of 0.7%-15.4% for the competitive FPIA, while 78.7%-115.3% with RSDs of 0.7%-12.5% for the noncompetitive FPIA. The amounts of benzothiostrobin in rice detected by the FPIAs were consistent with those detected by high performance liquid chromatography.


Subject(s)
Acrylates/analysis , Benzothiazoles/analysis , Dendrimers/chemistry , Fluorescein-5-isothiocyanate/chemistry , Fluorescence Polarization Immunoassay/methods , Peptides/chemistry
9.
Neural Regen Res ; 16(9): 1882-1889, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33510097

ABSTRACT

Vascular endothelial growth factor (VEGF) and fibroblast growth factor 2 (FGF2) are well-known growth factors involved in the regeneration of various tissues and organs, including peripheral nerve system. In the present study, we elucidated the local and systemic effects of plasmid construct рBud-coVEGF165-coFGF2 injected into the epineurium of intact rat sciatic nerve. Results of histological examination of sciatic nerve and multiplex immunoassays of serum showed the absence of immunogenicity and biosafety of plasmid рBud-coVEGF165-coFGF2. Moreover, local administration of plasmid DNA construct resulted in significantly decreased levels of pro-inflammatory cytokines in the peripheral blood, including tumor necrosis factor α (TNFα) and interleukin-12, and significantly increased levels of cytokines and chemokines including Regulated upon Activation, Normal T Cell Expressed and Presumably Secrete (RANTES), epidermal growth factor, interleukin-2, and monocyte chemoattractant protein 1. These changes in the peripheral blood on day 7 after injection of plasmid construct рBud-coVEGF165-coFGF2 show that the plasmid construct has systemic effects and may modulate immune response. At the same time, reverse transcription-polymerase chain reaction revealed transient expression of coFGF2, coVEGF165, ratFGF2 and ratVEGFA with direct transport of transcripts from distal part to proximal part of the sciatic nerve. Immunohistochemical staining revealed prolonged presence of VEGFA in sciatic nerve till 14 days post-injection. These findings suggest that local administration of plasmid construct рBud-coVEGF165-coFGF2 at a concentration of 30 ng/µL results in the formation of pro-angiogenic stimuli and, and the plasmid construct, used as a drug for gene therapy, might potentially facilitate regeneration of the sciatic nerve. The study was approved by the Animal Ethics Committee of Kazan Federal University, procedures were approved by the Local Ethics Committee (approval No. 5) on May 27, 2014.

10.
Mater Sci Eng C Mater Biol Appl ; 109: 110605, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32228918

ABSTRACT

BACKGROUND: Polyamidoamine (PAMAM) dendrimers are a new class of monodisperse polymers that are used for drug delivery in systemic administrations. The influence of PAMAM dendrimers on components of the blood coagulation system has been extensively studied, but their effect on the activity of the fibrinolysis system has not been studied to date. METHODS: The effect of cationic (G1-G3) and anionic (G1.5-G3.5) PAMAM dendrimers on the conformation and function of the main components of the coagulation and fibrinolysis systems was comparatively studied. Changes in overall plasma hemostatic potential, thrombin generation, prothrombin time, thrombin and tPA activities, the fluorescence of fibrinogen and plasminogen, zeta potential, polymerization of fibrinogen, and activation of plasminogen were analyzed to assess coagulofibrinolytic mechanisms of influence of the charge of the dendrimers. RESULTS: Cationic dendrimers increased prothrombin time, suppressed thrombin generation in plasma, and changed the conformation and coagulability of fibrinogen, while anionic dendrimers did not have such effects. Anionic dendrimers slightly reduced tPA activity and altered plasminogen conformation much more strongly than the cationic dendrimers. Plasminogen activation by tPA was strongly inhibited by anionic dendrimers and weakly stimulated by cationic dendrimers. All these effects were enhanced with increasing generation and concentration of the dendrimers. CONCLUSIONS: PAMAM-NH2 dendrimers inhibit the extrinsic activation pathway of the coagulation system and alter the conformation and function of fibrinogen. PAMAM-COOH dendrimers change the conformation of plasminogen and inhibit its activation by tPA. This study gives new insight into the effect of anionic PAMAM dendrimers on the activity of the fibrinolytic system. For intravenous applications, the antifibrinolytic effect of anionic PAMAM dendrimers of generation ≥G2.5 should be considered.


Subject(s)
Blood Coagulation/drug effects , Hemostatics , Dendrimers/chemistry , Dendrimers/pharmacology , Hemostatics/chemistry , Hemostatics/pharmacology , Humans
11.
Brain Struct Funct ; 224(9): 3059-3073, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31493024

ABSTRACT

The development of individual organs and the whole organism is under the control by morphogenetic factors over the critical period of morphogenesis. This study was aimed to test our hypothesis that the developing brain operates as an endocrine organ during morphogenesis, in rats during the perinatal period (Ugrumov in Neuro Chem 35:837-850, 2010). Norepinephrine, which is a morphogenetic factor, was used as a marker of the endocrine activity of the developing brain, although it is also secreted by peripheral organs. In this study, it was first shown that the concentration of norepinephrine in the peripheral blood of neonatal rats is sufficient to ensure the morphogenetic effect on the peripheral organs and the brain itself. Using pharmacological suppression of norepinephrine production in the brain, but not in peripheral organs, it was shown that norepinephrine is delivered from the brain to the general circulation in neonatal rats, that is, during morphogenesis. In fact, even partial suppression of norepinephrine production in the brain of neonatal rats led to a significant decrease of norepinephrine concentration in plasma, suggesting that at this time the brain is an important source of circulating norepinephrine. Conversely, the suppression of the production of norepinephrine in the brain of prepubertal rats did not cause a change in its concentration in plasma, showing no secretion of brain-derived norepinephrine to the bloodstream after morphogenesis. The above data support our hypothesis that morphogenetic factors, including norepinephrine, are delivered from the developing brain to the bloodstream, which occurs only during the critical period of morphogenesis.


Subject(s)
Brain/growth & development , Morphogenesis , Norepinephrine/physiology , Animals , Endocrine System/physiology , Female , Male , Neurons/physiology , Norepinephrine/blood , Rats, Wistar
12.
Front Pharmacol ; 9: 86, 2018.
Article in English | MEDLINE | ID: mdl-29559908

ABSTRACT

We examined the effect of transplantation of allogenic adipose-derived stem cells (ADSCs) with properties of mesenchymal stem cells (MSCs) on posttraumatic sciatic nerve regeneration in rats. We suggested an approach to rat sciatic nerve reconstruction using the nerve from the other leg as a graft. The comparison was that of a critical 10 mm nerve defect repaired by means of autologous nerve grafting versus an identical lesion on the contralateral side. In this experimental model, the same animal acts simultaneously as a test model, and control. Regeneration of the left nerve was enhanced by the use of ADSCs, whereas the right nerve healed under natural conditions. Thus the effects of individual differences were excluded and a result closer to clinical practice obtained. We observed significant destructive changes in the sciatic nerve tissue after surgery which resulted in the formation of combined contractures in knee and ankle joints of both limbs and neurotrophic ulcers only on the right limb. The stimulation of regeneration by ADSCs increased the survival of spinal L5 ganglia neurons by 26.4%, improved sciatic nerve vascularization by 35.68% and increased the number of myelin fibers in the distal nerve by 41.87%. Moreover, we have demonstrated that S100, PMP2, and PMP22 gene expression levels are suppressed in response to trauma as compared to intact animals. We have shown that ADSC-based therapy contributes to significant improvement in the regeneration.

13.
Biochim Biophys Acta ; 1860(4): 629-35, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26723174

ABSTRACT

BACKGROUND: Mechanisms of fibrin-specificity of tissue plasminogen activator (tPA) and recombinant staphylokinase (STA) are different, therefore we studied in vitro the possibility of the synergy of their combined thrombolytic action. METHODS: Thrombolytic effects of tPA, STA and their combinations were measured by lysis rate of human plasma clot and side effects were evaluated by decreasing in fibrinogen, plasminogen and α2-antiplasmin levels in the surrounding plasma at 37°C in vitro. RESULTS: STA and tPA induced dose- and time-dependent clot lysis: 50% lysis in 2 h was obtained with 30 nM tPA and 75 nM STA, respectively. At these concentrations, tPA produced greater degradation of plasma fibrinogen than STA. According to a mathematical analysis of dose-response curves by the isobole method, combinations of tPA and STA caused a considerable synergistic thrombolytic effect. The simultaneous and sequential combinations of tPA (<4 nM) and STA (<35 nM) induced a significant fibrin-specific synergistic thrombolysis, which was more pronounced in 2 h at simultaneous combinations than at sequential addition of STA after 30 min of tPA action. Simultaneous combination of 2.5 nM tPA and 15 nM STA showed a maximal 3-fold increase in thrombolytic effect compared to the expected total effect of the individual agents. Sequential combinations caused a lower depletion of plasma proteins compared to simultaneous combinations. CONCLUSIONS: The simultaneous and sequential combinations of tPA and STA possessed synergistic fibrin-specific thrombolytic action on clot lysis in vitro. GENERAL SIGNIFICANCE: The results show that combined thrombolysis may be more effective and safer than thrombolysis with each activator alone.


Subject(s)
Fibrinogen/chemistry , Fibrinolysis , Plasminogen/chemistry , Streptokinase/chemistry , Tissue Plasminogen Activator/chemistry , Fibrinogen/metabolism , Humans , Plasminogen/metabolism
14.
Biochim Biophys Acta ; 1725(3): 370-6, 2005 Oct 10.
Article in English | MEDLINE | ID: mdl-16176856

ABSTRACT

Kinetic parameters (k(Pg) and K(Pg)) were determined for activation of Glu-plasminogen (Glu-Pg) and Lys-plasminogen (Lys-Pg) type I (with N-linked carbohydrate chain at Asn-289) and type II (with unsubstituted Asn-289) by plasmin-staphylokinase (Pm-STA) complex. The K(Pg) values for Glu-Pg I and Lys-Pg I (17.1 and 11.2 microM, respectively) were higher than those for Glu-Pg II and Lys-Pg II (14.9 and 5.4 microM, respectively), while only minor differences in the k(Pg) values were observed between plasminogens type I and type II. Soluble fibrin significantly increased the k(Pg)/K(Pg) values for activation of all four plasminogens due to a decrease in the K(Pg) values but did not alter the k(Pg) values. However, the activation of plasminogens type I was stimulated by fibrin lesser degree than that of plasminogens type II. These findings indicate that N-glycosylation of kringle 3 of plasminogen decreases the stability of Pm-STA-Pg ternary enzyme-substrate complex in solution as well as interferes with its formation and rearrangement on the fibrin surface.


Subject(s)
Enzyme Activation , Metalloendopeptidases/metabolism , Plasminogen/chemistry , Fibrin/pharmacology , Fibrinolysin/metabolism , Glycosylation , Humans , Kinetics , Peptide Fragments/metabolism , Plasminogen/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL