Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 114
Filter
1.
Phytother Res ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600725

ABSTRACT

Neurodegenerative disorders (NDs) are among the most common causes of death across the globe. NDs are characterized by progressive damage to CNS neurons, leading to defects in specific brain functions such as memory, cognition, and movement. The most common NDs are Parkinson's, Alzheimer's, Huntington's, and amyotrophic lateral sclerosis (ALS). Despite extensive research, no therapeutics or medications against NDs have been proven to be effective. The current treatment of NDs involving symptom-based targeting of the disease pathogenesis has certain limitations, such as drug resistance, adverse side effects, poor blood-brain barrier permeability, and poor bioavailability of drugs. Some studies have shown that plant-derived natural compounds hold tremendous promise for treating and preventing NDs. Therefore, the primary objective of this review article is to critically analyze the properties and potency of some of the most studied phytomedicines, such as quercetin, curcumin, epigallocatechin gallate (EGCG), apigenin, and cannabinoids, and highlight their advantages and limitations for developing next-generation alternative treatments against NDs. Further extensive research on pre-clinical and clinical studies for developing plant-based drugs against NDs from bench to bedside is warranted.

2.
Article in English | MEDLINE | ID: mdl-38231052

ABSTRACT

BACKGROUND: As per the recommendation of the United States Food and Drug Administration, more research is needed to determine the antibody titer against COVID-19 vaccination. OBJECTIVE: The study aimed to understand the relationship between the antibody titer to the demographics, infection severity, and cycle threshold (CT) values of confirmed COVID-19 patients. METHODS: Initially, we obtained consent from 185 populations and included sixty RT-PCRpositive COVID-19 patients from Kamrup District in the Northeast State of Assam, India. The vaccination status was recorded and tested for the level of serum immunoglobulin (IgG). The CT values, gender, and clinical symptoms-based scoring (CSBS) correlated with their IgG value. RESULTS: Around 48% of participants gained an antibody titer more than the threshold value and showed CT values between 18-25. Moreover, the maximum distributed score above the average was found between the CT values 18-25. CONCLUSION: The IgG titer value differs significantly amongst the vaccinated population, which may depend upon their genetic and demographic variability.

3.
mSystems ; 8(6): e0074523, 2023 Dec 21.
Article in English | MEDLINE | ID: mdl-37882544

ABSTRACT

IMPORTANCE: Our study investigated how a traditional drink called Apong, made from fermented rice, affects the gut and health of the Mishing community in India. We compared two groups of people who drink Apong to a group of people who do not drink it. To accomplish this, we studied the gut bacteria, fecal metabolites, and blood samples of the participants. It was found that the people who drank Apong had higher blood pressure but lower blood sugar and protein levels than people who did not drink it. We also found that the gut microbiome composition of people who drank Apong was different from those who did not drink it. Moreover, people who drank Apong had lower levels of isovaleric acid in their feces. Overall, this study shows that a traditional drink like Apong can affect the gut bacteria of a community.


Subject(s)
Gastrointestinal Microbiome , Hypertension , Humans , Bacteria , Fermented Beverages , Feces/microbiology
4.
J Fungi (Basel) ; 9(9)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37755005

ABSTRACT

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a highly infectious positive RNA virus, has spread from its epicenter to other countries with increased mortality and morbidity. Its expansion has hampered humankind's social, economic, and health realms to a large extent. Globally, investigations are underway to understand the complex pathophysiology of coronavirus disease (COVID-19) induced by SARS-CoV-2. Though numerous therapeutic strategies have been introduced to combat COVID-19, none are fully proven or comprehensive, as several key issues and challenges remain unresolved. At present, natural products have gained significant momentum in treating metabolic disorders. Mushrooms have often proved to be the precursor of various therapeutic molecules or drug prototypes. The plentiful bioactive macromolecules in edible mushrooms, like polysaccharides, proteins, and other secondary metabolites (such as flavonoids, polyphenols, etc.), have been used to treat multiple diseases, including viral infections, by traditional healers and the medical fraternity. Some edible mushrooms with a high proportion of therapeutic molecules are known as medicinal mushrooms. In this review, an attempt has been made to highlight the exploration of bioactive molecules in mushrooms to combat the various pathophysiological complications of COVID-19. This review presents an in-depth and critical analysis of the current therapies against COVID-19 versus the potential of natural anti-infective, antiviral, anti-inflammatory, and antithrombotic products derived from a wide range of easily sourced mushrooms and their bioactive molecules.

5.
World J Microbiol Biotechnol ; 39(11): 315, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37736853

ABSTRACT

Preparation of traditionally fermented soybeans varies across ethnicities with distinct tastes, flavour, and nutritional values. The fermented soybean varieties Hawaijar, Bekang, and Akhone of north-east India are associated with diverse ethnic groups from Manipur, Mizoram, and Nagaland, respectively. These varieties differ in substrate and traditional practice that exerts differential bacterial-metabolite profile, which needs an in-depth analysis i. Culture-dependent and independent techniques investigated the bacterial diversity of the fermented soybean varieties. Gas chromatography and mass spectroscopy (GC-MS) studied these varieties' metabolite profiles. The common dominant bacterial genera detected in Hawaijar, Bekang, and Akhone were Bacillus, Ignatzschinaria, and Corynebacterium, with the presence of Brevibacillus and Staphylococcus exclusively in Hawaijar and Oceanobacillus in Bekang and Akhone. The metabolite analysis identified a higher abundance of essential amino acids, amino and nucleotide sugars, and vitamins in Hawaijar, short-chain fatty acids in Bekang, polyunsaturated fatty acids in Akhone and Hawaijar, and prebiotics in Akhone. The bacteria-metabolite correlation analysis predicted four distinct bacterial clusters associated with the differential synthesis of the functional metabolites. While B. subtilis is ubiquitous, cluster-1 comprised B. thermoamylovorans/B. amyloliquefaciens, cluster-2 comprised B. tropicus, cluster-3 comprised B. megaterium/B. borstelensis, and cluster-4 comprised B. rugosus. To the best of our knowledge, this is the first comparative study on traditional fermented soybean varieties of north-east India linking bacterial-metabolite profiles which may help in designing starters for desired functionalities in the future.


Subject(s)
Brevibacillus , Coleoptera , Fermented Foods , Humans , Animals , Glycine max , India , Ethnicity
6.
BMC Genomics ; 24(1): 565, 2023 Sep 22.
Article in English | MEDLINE | ID: mdl-37740204

ABSTRACT

The vaginal microenvironment of healthy women has a predominance of Lactobacillus crispatus, L. iners, L. gasseri, and L. jensenii. The genomic repertoire of the strains of each of the species associated with the key attributes thereby regulating a healthy vaginal environment needs a substantial understanding.We studied all available human strains of the four lactobacilli across different countries, isolated from vaginal and urinal sources through phylogenetic and pangenomic approaches. The findings showed that L. iners has the highest retention of core genes, and L. crispatus has more gene gain in the evolutionary stratum. Interestingly, L. gasseri and L. jensenii demonstrated major population-specific gene-cluster gain/loss associated with bacteriocin synthesis, iron chelating, adherence, zinc and ATP binding proteins, and hydrolase activity. Gene ontology enrichment analysis revealed that L. crispatus strains showed greater enrichment of functions related to plasma membrane integrity, biosurfactant, hydrogen peroxide synthesis, and iron sequestration as an ancestral derived core function, while bacteriocin and organic acid biosynthesis are strain-specific accessory enriched functions. L. jensenii showed greater enrichment of functions related to adherence, aggregation, and exopolysaccharide synthesis. Notably, the key functionalities are heterogeneously enriched in some specific strains of L. iners and L. gasseri.This study shed light on the genomic features and their variability that provides advantageous attributes to predominant vaginal Lactobacillus species maintaining vaginal homeostasis. These findings evoke the need to consider region-specific candidate strains of Lactobacillus to formulate prophylactic measures against vaginal dysbiosis for women's health.


Subject(s)
Bacteriocins , Lactobacillus , Humans , Female , Lactobacillus/genetics , Phylogeny , Bacteriocins/genetics , Biological Evolution , Cell Membrane
7.
Virol J ; 20(1): 201, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37658381

ABSTRACT

To understand the mechanism underlying the evolution of SARS-CoV-2 in a population, we sequenced 92 viral genomes from Assam, India. Analysis of these and database sequences revealed a complete selective sweep of a haplotype in Assam carrying 13 pre-existing variants, including a high leap in frequency of a variant on ORF8, which is involved in immune evasion. A comparative study between sequences of same lineage and similar time frames in and outside Assam showed that 10 of the 13 pre-existing variants had a frequency ranging from 96 to 99%, and the remaining 3 had a low frequency outside Assam. Using a phylogenetic approach to infer sequential occurrences of variants we found that the variant Phe120del on ORF8, which had a low frequency (1.75%) outside Assam, is at the base of the phylogenetic tree of variants and became totally fixed (100%) in Assam population. Based on this observation, we inferred that the variant on ORF8 had a selective advantage, so it carried the haplotype to reach the100% frequency. The haplotype also carried 32 pre-existing variants at a frequency from 1.00 to 80.00% outside Assam. Those of these variants that are more closely linked to the S-protein locus, which often carries advantageous mutations and is tightly linked to the ORF8 locus, retained higher frequencies, while the less tightly linked variants showed lower frequencies, likely due to recombination among co- circulating variants in Assam. The ratios of non-synonymous substitutions to synonymous substitutions suggested that some genes such as those coding for the S-protein and non-structural proteins underwent positive selection while others were subject to purifying selection during their evolution in Assam. Furthermore, we observed negative correlation of the Ct value of qRT-PCR of the patients with abundant ORF6 transcripts, suggesting that ORF6 can be used as a marker for estimating viral titer. In conclusion, our in-depth analysis of SARS-CoV-2 genomes in a regional population reveals the mechanism and dynamics of viral evolution.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Haplotypes , SARS-CoV-2/genetics , Phylogeny , COVID-19/epidemiology , Mutation
8.
Toxins (Basel) ; 15(8)2023 08 14.
Article in English | MEDLINE | ID: mdl-37624261

ABSTRACT

Indian Red Scorpion (Mesobuthus tamulus) stings are a neglected public health problem in tropical and sub-tropical countries, including India. The drawbacks of conventional therapies using commercial anti-scorpion antivenom (ASA) and α1-adrenoreceptor antagonists (AAA) have prompted us to search for an adequate formulation to improve treatment against M. tamulus stings. Novel therapeutic drug formulations (TDF) of low doses of commercial ASA, AAA, and ascorbic acid have remarkably improved in neutralising the in vivo toxic effects of M. tamulus venom (MTV) tested in Caenorhabditis elegans and Wistar strain albino rats in vivo models. The neutralisation of MTV-induced production of free radicals, alteration of the mitochondrial transmembrane potential, and upregulated expression of genes involved in apoptosis, detoxification, and stress response in C. elegans by TDF surpassed the same effect shown by individual components of the TDF. Further, TDF efficiently neutralized the MTV-induced increase in blood glucose level within 30 to 60 min post-treatment, organ tissue damage, necrosis, and pulmonary oedema in Wistar rats, indicating its clinical application for effecting treating M. tamulus envenomation. This study demonstrates for the first time that C. elegans can be a model organism for screening the neutralization potency of the drug molecules against a neurotoxic scorpion venom.


Subject(s)
Bites and Stings , Caenorhabditis elegans , Rats , Animals , Rats, Wistar , Venoms , Scorpions
9.
Probiotics Antimicrob Proteins ; 15(4): 983-1000, 2023 08.
Article in English | MEDLINE | ID: mdl-37171690

ABSTRACT

Recent studies on genetically susceptible individuals and animal models revealed the potential role of the intestinal microbiota in the pathogenesis of type 1 diabetes (T1D) through complex interactions with the immune system. T1D incidence has been increasing exponentially with modern lifestyle altering normal microbiota composition, causing dysbiosis characterized by an imbalance in the gut microbial community. Dysbiosis has been suggested to be a potential contributing factor in T1D. Moreover, several studies have shown the potential role of probiotics in regulating T1D through various mechanisms. Current T1D therapies target curative measures; however, preventive therapeutics are yet to be proven. This review highlights immune microbiota interaction and the immense role of probiotics and postbiotics as important immunological interventions for reducing the risk of T1D.


Subject(s)
Diabetes Mellitus, Type 1 , Gastrointestinal Microbiome , Microbiota , Probiotics , Animals , Diabetes Mellitus, Type 1/prevention & control , Dysbiosis , Probiotics/therapeutic use
10.
Environ Sci Pollut Res Int ; 30(30): 74459-74484, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37219770

ABSTRACT

Crude petroleum oil spillage is becoming a global concern for environmental pollution and poses a severe threat to flora and fauna. Bioremediation is considered a clean, eco-friendly, and cost-effective process to achieve success among the several technologies adopted to mitigate fossil fuel pollution. However, due to the hydrophobic and recalcitrant nature of the oily components, they are not readily bioavailable to the biological components for the remediation process. In the last decade, nanoparticle-based restoration of oil-contaminated, owing to several attractive properties, has gained significant momentum. Thus, intertwining nano- and bioremediation can lead to a suitable technology termed 'nanobioremediation' expected to nullify bioremediation's drawbacks. Furthermore, artificial intelligence (AI), an advanced and sophisticated technique that utilizes digital brains or software to perform different tasks, may radically transfer the bioremediation process to develop an efficient, faster, robust, and more accurate method for rehabilitating oil-contaminated systems. The present review outlines the critical issues associated with the conventional bioremediation process. It analyses the significance of the nanobioremediation process in combination with AI to overcome such drawbacks of a traditional approach for efficiently remedying crude petroleum oil-contaminated sites.


Subject(s)
Environmental Restoration and Remediation , Petroleum Pollution , Petroleum , Soil Pollutants , Biodegradation, Environmental , Prospective Studies , Artificial Intelligence , Soil Pollutants/analysis , Soil/chemistry , Nanotechnology , Soil Microbiology , Hydrocarbons
11.
J Chem Inf Model ; 63(13): 4056-4069, 2023 07 10.
Article in English | MEDLINE | ID: mdl-37092784

ABSTRACT

Snake venom metalloproteinases (SVMPs) are important drug targets against snakebite envenoming, the neglected tropical disease with the highest mortality worldwide. Here, we focus on Russell's viper (Daboia russelii), one of the "big four" snakes of the Indian subcontinent that, together, are responsible for ca. 50,000 fatalities annually. The "Russell's viper venom factor X activator" (RVV-X), a highly toxic metalloproteinase, activates the blood coagulation factor X (FX), leading to the prey's abnormal blood clotting and death. Given its tremendous public health impact, the WHO recognized an urgent need to develop efficient, heat-stable, and affordable-for-all small-molecule inhibitors, for which a deep understanding of the mechanisms of action of snake's principal toxins is fundamental. In this study, we determine the catalytic mechanism of RVV-X by using a density functional theory/molecular mechanics (DFT:MM) methodology to calculate its free energy profile. The results showed that the catalytic process takes place via two steps. The first step involves a nucleophilic attack by an in situ generated hydroxide ion on the substrate carbonyl, yielding an activation barrier of 17.7 kcal·mol-1, while the second step corresponds to protonation of the peptide nitrogen and peptide bond cleavage with an energy barrier of 23.1 kcal·mol-1. Our study shows a unique role played by Zn2+ in catalysis by lowering the pKa of the Zn2+-bound water molecule, enough to permit the swift formation of the hydroxide nucleophile through barrierless deprotonation by the formally much less basic Glu140. Without the Zn2+ cofactor, this step would be rate-limiting.


Subject(s)
Antivenins , Daboia , Animals , Antivenins/pharmacology , Zinc , Viper Venoms/chemistry , Viper Venoms/toxicity , Metalloproteases
12.
J Med Chem ; 66(8): 5364-5376, 2023 04 27.
Article in English | MEDLINE | ID: mdl-37018514

ABSTRACT

Snake venom-secreted phospholipase A2 (svPLA2) enzymes, both catalytically active and inactive, are a central component in envenoming. These are responsible for disrupting the cell membrane's integrity, inducing a wide range of pharmacological effects, such as the necrosis of the bitten limb, cardiorespiratory arrest, edema, and anticoagulation. Although extensively characterized, the reaction mechanisms of enzymatic svPLA2 are still to be thoroughly understood. This review presents and analyses the most plausible reaction mechanisms for svPLA2, such as the "single-water mechanism" or the "assisted-water mechanism" initially proposed for the homologous human PLA2. All of the mechanistic possibilities are characterized by a highly conserved Asp/His/water triad and a Ca2+ cofactor. The extraordinary increase in activity induced by binding to a lipid-water interface, known as "interfacial activation," critical for the PLA2s activity, is also discussed. Finally, a potential catalytic mechanism for the postulated noncatalytic PLA2-like proteins is anticipated.


Subject(s)
Crotalid Venoms , Snake Venoms , Humans , Phospholipases A2/chemistry , Phospholipases A2/metabolism , Water
13.
J Biomol Struct Dyn ; 41(24): 15569-15583, 2023.
Article in English | MEDLINE | ID: mdl-36994880

ABSTRACT

Snake venom C-type lectins (Snaclecs) display anticoagulant and platelet-modulating activities; however, their interaction with the critical components of blood coagulation factors was unknown. Computational analysis revealed that Echicetin (Snaclec from Echis carinatus venom) interacted with heavy chain of thrombin, and heavy and light chains of factor Xa (FXa). Based on FXa and thrombin binding regions of Echicetin, the two synthetic peptides (1A and 1B) were designed. The in silico binding studies of the peptides with thrombin and FXa showed that peptide 1B interacted with both heavy and light chains of thrombin and, peptide 1A interacted with only heavy chain of thrombin. Similarly, peptide 1B interacted with both heavy and light chains of FXa; however, peptide 1A interacted only with heavy chain of FXa. Alanine screening predicted the hot-spots residues for peptide 1A (Aspartic acid6, Valine8, Valine9, and Tyrosine17 with FXa, and Isoleucine14, Lysine15 with thrombin) and peptide 1B (Valine16 with FXa). Spectrofluorometric interaction study showed a lower Kd value for peptide 1B binding with both FXa and thrombin than peptide 1A, indicating higher binding strength of the former peptide. The circular dichroism spectroscopy also established the interaction between thrombin and the custom peptides. The in vitro study demonstrated higher anticoagulant activity of peptide 1B than peptide 1A due to higher inhibition of thrombin and FXa. Inhibition of anticoagulant activity of the peptides by respective anti-peptide antibodies corroborates our hypothesis that peptides 1A and 1B represent the anticoagulant regions of Echicetin and may be developed as antithrombotic peptide drug prototypes.Communicated by Ramaswamy H. Sarma.


Subject(s)
Anticoagulants , Lectins, C-Type , Anticoagulants/pharmacology , Anticoagulants/chemistry , Thrombin , Viper Venoms/chemistry , Peptides/pharmacology
14.
Free Radic Biol Med ; 197: 23-45, 2023 03.
Article in English | MEDLINE | ID: mdl-36669545

ABSTRACT

Neurodegenerative disorders (ND), associated with the progressive loss of neurons, oxidative stress-mediated production of reactive oxygen species (ROS), and mitochondrial dysfunction, can be treated with synthetic peptides possessing innate neurotrophic effects and neuroprotective activity. Computational analysis of two small synthetic peptides (trideca-neuropeptide, TNP; heptadeca-neuropeptide, HNP) developed from the nerve growth factors from snake venoms predicted their significant interaction with the human TrkA receptor (TrkA). In silico results were validated by an in vitro binding study of the FITC-conjugated custom peptides to rat pheochromocytoma PC-12 cell TrkA receptors. Pre-treatment of PC-12 cells with TNP and HNP induced neuritogenesis and significantly reduced the paraquat (PT)-induced cellular toxicity, the release of lactate dehydrogenase from the cell cytoplasm, production of intracellular ROS, restored the level of antioxidants, prevented alteration of mitochondrial transmembrane potential (ΔΨm) and adenosine triphosphate (ATP) production, and inhibited cellular apoptosis. These peptides lack in vitro cytotoxicity, haemolytic activity, and platelet-modulating properties and do not interfere with the blood coagulation system. Functional proteomic analyses demonstrated the reversal of PT-induced upregulated and downregulated metabolic pathway genes in PC-12 cells that were pre-treated with HNP and revealed the metabolic pathways regulated by HNP to induce neuritogenesis and confer protection against PT-induced neuronal damage in PC-12. The quantitative RT-PCR analysis confirmed that the PT-induced increased and decreased expression of critical pro-apoptotic and anti-apoptotic genes had been restored in the PC-12 cells pre-treated with the custom peptides. A network gene expression profile was proposed to elucidate the molecular interactions among the regulatory proteins for HNP to salvage the PT-induced damage. Taken together, our results show how the peptides can rescue PT-induced oxidative stress, mitochondrial dysfunction, and cellular death and suggest new opportunities for developing neuroprotective drugs.


Subject(s)
Adrenal Gland Neoplasms , Pheochromocytoma , Rats , Humans , Animals , Reactive Oxygen Species/metabolism , Paraquat/pharmacology , Pheochromocytoma/drug therapy , Pheochromocytoma/genetics , Proteomics , Apoptosis , Oxidative Stress , Snake Venoms/metabolism , Snake Venoms/pharmacology
15.
J Ethnopharmacol ; 305: 116078, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36567038

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Scorpion sting is a public health concern with limited clinical symptomatic treatment. The clinical treatment uses anti-scorpion antivenom and prazosin (α-adrenergic inhibitor), often in combination with insulin, to reduce scorpion venom-induced hyperglycemia and other complications. However, these therapies also possess some limitations, necessitating urgent exploration of ethnomedicines, mainly traditional medicinal plants, to treat scorpion stings. Unfortunately, several conventional treatments are not scientifically validated, thus raising questions about their quality and utility. Therefore, pharmacological re-assessment of such medicinal plants to alleviate scorpion stings' complications is essential. AIM OF THE STUDY: The principal objectives of this study are to provide a brief overview of medically important scorpions of the world, outline the extant traditional practices, and comprehensively review plants used in conventional ethnic medicines to treat scorpion stings over time. Modern technological advances in identifying and characterizing plant bioactive molecules are also mentioned in this review. MATERIALS AND METHODS: The traditionally used medicinal plants against scorpion stings were reviewed from the available literature in the database. The Plant List (http://www.theplantlist.org/) was used to validate the scientific names of the plants mentioned in this study. The search targeted literature on conventional treatments and crude plant extracts or their bioactive components with proven neutralization capacity against scorpion stings. Search words used were 'scorpion sting,' 'treatment for a scorpion sting,' 'antivenom and scorpion sting,' 'traditional treatment for scorpion stings, and 'natural compounds against scorpion stings'. RESULTS: A list of more than 200 medicinal plants traditionally used in several countries for treating scorpion stings is presented in this review. Though some myth-based remedies are practiced to treat scorpion stings, no empirical evidence exists to validate this aspect of traditional knowledge. Only 38 traditional medicinal plant extracts have been tested under in-vivo and in-vitro conditions to determine their neutralization potency of scorpion envenomation. Although a few bioactive plant constituents showing scorpion venom neutralization potency have been characterized, they are not yet commercially available for clinical application. CONCLUSIONS: There is tremendous potential locked in medicinal plants' traditional knowledge for scorpion envenomation treatment. Translating this knowledge into the clinical application will require pharmacological reassessment, in tandem with isolation and characterization of active compounds to prove their prophylactic prowess. Almost equally important would be the formulation of stringent strategies to conserve such medicinal plants from overexploitation.


Subject(s)
Plants, Medicinal , Scorpion Stings , Scorpion Venoms , Animals , Scorpion Stings/drug therapy , Scorpion Stings/complications , Antivenins/therapeutic use , Medicine, Traditional , Scorpions
16.
Crit Rev Microbiol ; 49(2): 256-282, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35312419

ABSTRACT

The vagina endures multifaceted changes from neonatal to menopausal phases due to hormonal flux, metabolite deposition, and microbial colonization. These features have important implications in women's health. Several pre-factors show dynamic characteristics according to the phases that shift the vaginal microbiota from anaerobes to aerobes which is a hallmark of healthy vaginal environment. These factors include oestrogen levels, glycogen deposition, and vaginal microstructure. In the adult phase, Lactobacillus is highly dominant and regulates pH, adherence, aggregation, immune modulation, synthesis of bacteriocins, and biosurfactants (BSs) which are antagonistic to pathogens. Maternal factors are protective by favouring the colonization of lactobacilli in the vagina in the neonatal phase, which diminishes with age. The dominance of lactobacilli and dysbiosis in the adult phase depends on intrinsic and extrinsic factors in women, which vary between ethnicities. Recent developments in probiotics used against vaginal microbiome dysbiosis have shown great promise in restoring the normal microbiota including preventing the loss of beneficial bacteria. However, further in-depth studies are warranted to ensure long-term protection by probiotics. This review highlights various aspects of the vaginal microenvironment in different phases of growth and diverse ethnicities. Furthermore, it discusses future trends for formulating more effective population-specific probiotics and implications of paraprobiotics and postbiotics as effective therapeutics.


Subject(s)
Probiotics , Vaginosis, Bacterial , Adult , Infant, Newborn , Female , Humans , Dysbiosis/microbiology , Vagina/microbiology , Lactobacillus/metabolism , Women's Health , Bacteria , Vaginosis, Bacterial/microbiology
17.
Toxins (Basel) ; 14(12)2022 12 01.
Article in English | MEDLINE | ID: mdl-36548736

ABSTRACT

Cytotoxins (CTXs), an essential class of the non-enzymatic three-finger toxin family, are ubiquitously present in cobra venoms. These low-molecular-mass toxins, contributing to about 40 to 60% of the cobra venom proteome, play a significant role in cobra venom-induced toxicity, more prominently in dermonecrosis. Structurally, CTXs contain the conserved three-finger hydrophobic loops; however, they also exhibit a certain degree of structural diversity that dictates their biological activities. In their mechanism, CTXs mediate toxicity by affecting cell membrane structures and membrane-bound proteins and activating apoptotic and necrotic cell death pathways. Notably, some CTXs are also responsible for depolarizing neurons and heart muscle membranes, thereby contributing to the cardiac failure frequently observed in cobra-envenomed victims. Consequently, they are also known as cardiotoxins (CdTx). Studies have shown that cobra venom CTXs form cognate complexes with other components that potentiate the toxic effects of the venom's individual component. This review focuses on the pharmacological mechanism of cobra venom CTXs and their complexes, highlighting their significance in cobra venom-induced pathophysiology and toxicity. Furthermore, the potency of commercial antivenoms in reversing the adverse effects of cobra venom CTXs and their complexes in envenomed victims has also been discussed.


Subject(s)
Elapid Venoms , Toxins, Biological , Animals , Elapid Venoms/chemistry , Antivenins/therapeutic use , Cytotoxins/metabolism , Elapidae/metabolism , Toxins, Biological/metabolism
18.
Toxicon ; 217: 56-77, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-35940357

ABSTRACT

Edible mushrooms, a class of macroscopic fungi, serve as delicious and nutritious food supplements around the world. Nevertheless, accidental consumption of poisonous mushrooms that results in fatality or severe illness is typical in all countries, especially among the tribal indigenous communities that forage wild mushrooms for food. In the Indian subcontinent, mushroom poisoning cases are underreported and neglected. Different classes of toxins, characterized from the poisonous mushrooms found globally, show variable clinical symptoms post-consumption. Although the Indian subcontinent is a biodiversity hotspot and home to different classes of fungi and mushrooms, many species of poisonous mushrooms and their toxins, have yet to be identified and characterized. No epidemiological studies or retrospective analyses of mushroom poisoning cases have been reported from the poison control centers in the Indian subcontinent. Nevertheless, some limited clinical and epidemiological data is available from India and Nepal, and therefore, we critically analyse the mushroom poisoning scenario in these countries, and discuss the mushroom toxins that are likely responsible for the post-ingestion toxicities. We also correlate the clinical manifestations of mushroom intoxication in India and Nepal with the pharmacological properties of the prevalent mushroom toxins in these countries. Our limited study of mushroom poisoning demonstrates that the adverse pharmacological effects of amatoxin, one of the deadliest mushroom toxins, are responsible for the highest mortality and morbidity in India and Nepal. Further, no specific antidote is available to treat mushroom intoxication in the region, and systemic and supportive care is all that is available for in-patient management of cases of severe poisoning. We also suggest a roadmap for the prevention and specific treatment against mushroom poisoning in the Indian subcontinent.


Subject(s)
Agaricales , Mushroom Poisoning , Mycotoxins , Toxins, Biological , Humans , Mushroom Poisoning/epidemiology , Mushroom Poisoning/prevention & control , Mycotoxins/analysis , Retrospective Studies
19.
Toxicon ; 215: 37-48, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35675849

ABSTRACT

Mesobuthus tamulus (Indian Red Scorpion) sting is a severe but neglected health issue in India. The accomplishment of in-patient scorpion sting management is highly dependent on the safety, efficacy, and homogeneity of scorpion antivenom preparation. Therefore, in this study, the above qualities of commercial anti-scorpion antivenoms manufactured in India were assessed by in vitro laboratory analyses. Biophysical characterization of venom by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, size exclusion chromatography, and proteomics analysis demonstrated that anti-scorpion antivenoms (ASAs) mostly contain F(ab')2 molecules with a trace amount of undigested immunoglobulin (Ig) G. The physicochemical characterization, electron microscopy, and dynamic light scattering studies revealed that ASAs were prepared according to the guidelines of World Health Organization (WHO), and were devoid of aggregate content and virus particles. ASAs did not show IgE contamination and bacterial endotoxin but demonstrated moderate complement activation properties, which may have adverse effects in treated patients. Spectrofluorometric and atomic force microscopy analyses showed poor binding of venom with commercial ASAs. The percent of antibodies raised against the venom toxins in commercial ASAs was determined at the range of 5.3-6.3%, which is a reason for their poor efficacy. This study advocates the importance of in vitro laboratory analyses for assessing commercial antivenom's quality and safety parameters before their pre-clinical research and clinical use to treat Indian red scorpion sting.


Subject(s)
Scorpion Stings , Scorpion Venoms , Animals , Antivenins/therapeutic use , Immunoglobulin G , Prevalence , Scorpion Stings/drug therapy , Scorpion Venoms/therapeutic use , Scorpions
20.
Int J Biol Macromol ; 208: 275-287, 2022 May 31.
Article in English | MEDLINE | ID: mdl-35331793

ABSTRACT

The Indian monocled cobra (Naja kaouthia) is one of the most prevalent venomous snakes in northeast India (NEI) and is the cause of many fatalities. The composition of NEI N. kaouthia venom (NkV) was deciphered using two different proteomic approaches: (i) 1D SDS-PAGE coupled to label-free quantification of protein bands using stringent identification criteria and (ii) reversed-phase high-performance liquid chromatography (RP-HPLC) followed by quantification based on area under the RP-HPLC peaks. The proteomic data from both strategies were compared. Proteomic analyses from both workflows identified 32 proteins (toxins) distributed over 10-14 snake venom protein families in NEI NkV. The relative abundances of the venom proteins determined from the analytical workflows coincided with the densitometry band intensities of the NEI NkV. Phospholipase A2 (13.1-16.0%) and three-finger toxins (58.5-64.2%) represented the most abundant enzymatic and non-enzymatic proteins in NEI NkV, respectively. Immuno-cross-reactivity studies by enzyme-linked immunoassay and immunoblot analyses pointed to the poor efficacy of commercial PAVs in recognizing the low molecular mass (<15 kDa) toxins of NEI NkV. Spectrofluorometric titration determined the presence of NEI NkV-specific antibodies in commercial PAV, at a level that was higher than that previously reported for eastern India NkV-specific antibodies in commercial antivenom.


Subject(s)
Naja naja , Toxins, Biological , Animals , Antivenins , Elapid Venoms/chemistry , India , Naja naja/metabolism , Proteome/metabolism , Proteomics/methods , Toxins, Biological/metabolism , Workflow
SELECTION OF CITATIONS
SEARCH DETAIL
...