Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
RSC Med Chem ; 15(3): 1055-1065, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38516601

ABSTRACT

The emergence of aminoglycoside resistance has prompted the development of amphiphilic aminoglycoside derivatives which target bacterial membranes. Tobramycin and nebramine ether derivatives initially designed for this purpose were optimized and screened for their potential application as outer membrane (OM) permeabilizing adjuvants. Structure-activity relationship (SAR) studies revealed that the tobramycin benzyl ether was the most optimal OM permeabilizer, capable of potentiating rifampicin, novobiocin, vancomycin, minocycline, and doxycycline against Gram-negative bacteria. The innovative use of this compound as an adjuvant is highlighted by its ability to sensitize multidrug-resistant (MDR) Gram-negative bacteria to rifampicin and restore the susceptibility of MDR Escherichia coli to minocycline.

2.
Small ; : e2308886, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38174607

ABSTRACT

Rechargeable Mg-ion Batteries (RMB) containing a Mg metal anode offer the promise of higher specific volumetric capacity, energy density, safety, and economic viability than lithium-ion battery technology, but their realization is challenging. The limited availability of suitable inorganic cathodes compatible with electrolytes relevant to Mg metal anode restricts the development of RMBs. Despite the promising capability of some oxides to reversibly intercalate Mg+2 ions at high potential, its lack of stability in chloride-containing ethereal electrolytes, relevant to Mg metal anode hinders the realization of a full practical RMB. Here the successful in situ encapsulation of monodispersed spherical V2 O5 (≈200 nm) is demonstrated by a thin layer of VS2 (≈12 nm) through a facile surface reduction route. The VS2 layer protects the surface of V2 O5 particles in RMB electrolyte solution (MgCl2 + MgTFSI in DME). Both V2 O5 and V2 O5 @VS2 particles demonstrate high initial discharge capacity. However, only the V2 O5 @VS2 material demonstrates superior rate performance, Coulombic efficiency (100%), and stability (138 mA h g-1 discharge capacity after 100 cycles), signifying the ability of the thin VS2 layer to protect the V2 O5 cathode and facilitate the Mg+2 ion intercalation/deintercalation into V2 O5 .

3.
Nat Nanotechnol ; 19(2): 208-218, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37798568

ABSTRACT

A critical current challenge in the development of all-solid-state lithium batteries (ASSLBs) is reducing the cost of fabrication without compromising the performance. Here we report a sulfide ASSLB based on a high-energy, Co-free LiNiO2 cathode with a robust outside-in structure. This promising cathode is enabled by the high-pressure O2 synthesis and subsequent atomic layer deposition of a unique ultrathin LixAlyZnzOδ protective layer comprising a LixAlyZnzOδ surface coating region and an Al and Zn near-surface doping region. This high-quality artificial interphase enhances the structural stability and interfacial dynamics of the cathode as it mitigates the contact loss and continuous side reactions at the cathode/solid electrolyte interface. As a result, our ASSLBs exhibit a high areal capacity (4.65 mAh cm-2), a high specific cathode capacity (203 mAh g-1), superior cycling stability (92% capacity retention after 200 cycles) and a good rate capability (93 mAh g-1 at 2C). This work also offers mechanistic insights into how to break through the limitation of using expensive cathodes (for example, Co-based) and coatings (for example, Nb-, Ta-, La- or Zr-based) while still achieving a high-energy ASSLB performance.

4.
Bioorg Med Chem Lett ; 97: 129371, 2024 01 01.
Article in English | MEDLINE | ID: mdl-37301521

ABSTRACT

Many antibiotics specific to Gram-positive bacteria like rifampicin (RIF) are inactive in Gram-negative bacteria because of outer membrane (OM) impermeability. Enhancing the OM permeability of these antibiotics with the help of OM perturbants is a promising strategy to develop new agents against Gram-negative bacteria. Here we report the synthesis and biological properties of amphiphilic tribasic galactosamines as potential RIF potentiators. Our results demonstrate that tribasic galactose-based amphiphiles potentiate RIF in multidrug-resistant Acinetobacter baumannii and Escherichia coli but not Pseudomonas aeruginosa in low salt-containing media. Under these conditions, lead compounds 20, 22 and 35 lowered the minimum inhibitory concentration of RIF by 64- to 256-fold against Gram-negative bacteria. However, the RIF-potentiating effect was reduced when bivalent Mg++ or Ca++ ions were added in the media at physiological concentrations. Overall, our results indicate that amphiphilic tribasic galactosamine-based compounds show reduced RIF-potentiating effects when compared to amphiphilic tobramycin antibiotics at physiological salt concentrations.


Subject(s)
Anti-Bacterial Agents , Rifampin , Rifampin/pharmacology , Anti-Bacterial Agents/pharmacology , Tobramycin/pharmacology , Gram-Negative Bacteria , Cell Membrane Permeability , Microbial Sensitivity Tests
5.
Environ Sci Pollut Res Int ; 30(60): 125439-125463, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38015400

ABSTRACT

Widespread and improper use of various anthelmintics, genetic, and epidemiological factors has resulted in anthelmintic-resistant (AR) helminth populations in livestock. This is currently quite common globally in different livestock animals including sheep, goats, and cattle to gastrointestinal nematode (GIN) infections. Therefore, the mechanisms underlying AR in parasitic worm species have been the subject of ample research to tackle this challenge. Current and emerging technologies in the disciplines of genomics, transcriptomics, metabolomics, and proteomics in livestock species have advanced the understanding of the intricate molecular AR mechanisms in many major parasites. The technologies have improved the identification of possible biomarkers of resistant parasites, the ability to find actual causative genes, regulatory networks, and pathways of parasites governing the AR development including the dynamics of helminth infection and host-parasite infections. In this review, various "omics"-driven technologies including genome scan, candidate gene, quantitative trait loci, transcriptomic, proteomic, and metabolomic approaches have been described to understand AR of parasites of veterinary importance. Also, challenges and future prospects of these "omics" approaches are also discussed.


Subject(s)
Anthelmintics , Gastrointestinal Diseases , Nematoda , Nematode Infections , Animals , Cattle , Sheep , Livestock , Proteomics , Nematode Infections/drug therapy , Nematode Infections/parasitology , Nematode Infections/veterinary , Anthelmintics/pharmacology , Anthelmintics/therapeutic use , Goats
7.
J Med Chem ; 66(19): 13369-13383, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37738232

ABSTRACT

Chemically induced proximity-based targeted protein degradation (TPD) has become a prominent paradigm in drug discovery. With the clinical benefit demonstrated by certain small-molecule protein degraders that target the cullin-RING E3 ubiquitin ligases (CRLs), the field has proactively strategized to tackle anticipated drug resistance by harnessing additional E3 ubiquitin ligases to enrich the arsenal of this therapeutic approach. Here, we endeavor to explore the collaborative efforts involved in unlocking a broad range of CRL4DCAF for degrader drug development. Throughout the discussion, we also highlight how both conventional and innovative approaches in drug discovery can be taken to realize this objective. Moving ahead, we expect a greater allocation of resources in TPD to pursue these high-hanging fruits.

8.
J Am Chem Soc ; 145(37): 20451-20461, 2023 09 20.
Article in English | MEDLINE | ID: mdl-37694929

ABSTRACT

Integrating an NIR fluorescent probe with a magnetic resonance imaging (MRI) agent to harvest complementary imaging information is challenging. Here, we have designed water-soluble, biocompatible, noncytotoxic, bright-NIR-emitting, sugar-functionalized, mechanically interlocked molecules (MIMs)-capped superparamagnetic ultrasmall Fe3O4 NPs for targeted multimodal imaging. Dual-functional stoppers containing an unsymmetrical NIR squaraine dye interlocked within a macrocycle to construct multifunctional MIMs are developed with enhanced NIR fluorescence efficiency and durability. One of the stoppers of the axle is composed of a lipophilic cationic TPP+ functionality to target mitochondria, and the other stopper comprises a dopamine-containing catechol group to anchor at the surface of the synthesized Fe3O4 NPs. Fe3O4 NPs surface-coated with targeted NIR rotaxanes help to deliver ultrasmall magnetic NPs specifically inside the mitochondria. Two carbohydrate moieties are conjugated with the macrocycle of the rotaxane via click chemistry to improve the water solubility of MitoSQRot-(Carb-OH)2-DOPA-Fe3O4 NPs. Water-soluble, rotaxane-capped Fe3O4 NPs are used for live-cell mitochondria-targeted NIR fluorescence confocal imaging, 3D and multicolor imaging in combination with T2-weighted MRI on a 9.4 T MR scanner with a high relaxation rate (r2) of 180.7 mM-1 s-1. Biocompatible, noncytotoxic, ultrabright NIR rotaxane-capped superparamagnetic ultrasmall monodisperse Fe3O4 NPs could be a promising agent for targeted multimodal imaging applications.


Subject(s)
Nanoparticles , Rotaxanes , Magnetic Resonance Imaging , Optical Imaging , Magnetic Iron Oxide Nanoparticles
9.
Adv Mater ; 35(51): e2304440, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37578018

ABSTRACT

Sodium-ion batteries have recently emerged as a promising alternative to lithium-based batteries, driven by an ever-growing demand for electricity storage systems. The present workproposes a cobalt-free high-capacity cathode for sodium-ion batteries, synthesized using a high-entropy approach. The high-entropy approach entails mixing more than five elements in a single phase; hence, obtaining the desired properties is a challenge since this involves the interplay between different elements. Here, instead of oxide, oxyfluoride is chosen to suppress oxygen loss during long-term cycling. Supplement to this, lithium is introduced in the composition to obtain high configurational entropy and sodium vacant sites, thus stabilizing the crystal structure, accelerating the kinetics of intercalation/deintercalation, and improving the air stability of the material. With the optimization of the cathode composition, a reversible capacity of 109 mAh g-1 (2-4 V) and 144 mAh g-1 (2-4.3 V) is observed in the first few cycles, along with a significant improvement in stability during prolonged cycling. Furthermore, in situ and ex situ diffraction studies during charging/discharging reveal that the high-entropy strategy successfully suppresses the complex phase transition. The impressive outcomes of the present work strongly motivate the pursuit of the high-entropy approach to develop efficient cathodes for sodium-ion batteries.

10.
Bioconjug Chem ; 34(8): 1407-1417, 2023 08 16.
Article in English | MEDLINE | ID: mdl-37289994

ABSTRACT

Here, our designed water-soluble NIR fluorescent unsymmetrical Cy-5-Mal/TPP+ consists of a lipophilic cationic TPP+ subunit that can selectively target and accumulate in a live-cell inner mitochondrial matrix where a maleimide residue of the probe undergoes faster chemoselective and site-specific covalent attachment with the exposed Cys residue of mitochondrion-specific proteins. On the basis of this dual localization effect, Cy-5-Mal/TPP+ molecules remain for a longer time period even after membrane depolarization, enabling long-term live-cell mitochondrial imaging. Due to the adequate concentration of Cy-5-Mal/TPP+ reached in live-cell mitochondria, it facilitates site-selective NIR fluorescent covalent labeling with Cys-exposed proteins, which are identified by the in-gel fluorescence assay and LC-MS/MS-based proteomics and supported by a computational method. This dual targeting approach with admirable photostability, narrow NIR absorption/emission bands, bright emission, long fluorescence lifetime, and insignificant cytotoxicity has been shown to improve real-time live-cell mitochondrial tracking including dynamics and interorganelle crosstalk with multicolor imaging applications.


Subject(s)
Fluorescent Dyes , Tandem Mass Spectrometry , Chromatography, Liquid , Fluorescent Dyes/chemistry , Mitochondria/metabolism , Cell Survival
11.
Trop Anim Health Prod ; 55(3): 212, 2023 May 20.
Article in English | MEDLINE | ID: mdl-37208528

ABSTRACT

Poor semen profile reflected by suboptimum fertility statistics is a concern in bulls reared for breeding purpose. A critical review of research on candidate genes and proteins associated with semen quality traits will be useful to understand the progress of molecular marker development for bull semen quality traits. Here, we have tabulated and classified candidate genes and proteins associated with bull semen quality based on a literature survey. A total of 175 candidate genes are associated with semen quality traits in various breeds of cattle. Several studies using candidate gene approach have identified 26 genes carrying a total of 44 single nucleotide polymorphisms. Furthermore, nine genome-wide association studies (GWASes) have identified 150 candidate genes using bovine single nucleotide polymorphisms (SNP) chips. Three genes, namely membrane-associated ring-CH-type finger 1 (MARCH1), platelet-derived growth factor receptor beta, and phosphodiesterase type 1, were identified commonly in two GWASes, which, especially MARCH1, are required to explore their regulatory roles in bull semen quality in in-depth studies. With the advancement of high-throughput-omic technologies, more candidate genes associated with bull semen quality may be identified in the future. Therefore, the functional significance of candidate genes and proteins need to be delved further into future investigations to augment bull semen quality.


Subject(s)
Genome-Wide Association Study , Semen Analysis , Cattle/genetics , Animals , Male , Semen Analysis/veterinary , Genome-Wide Association Study/veterinary , Semen/physiology , Fertility/genetics , Phenotype
12.
Chembiochem ; 24(3): e202200641, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36459158

ABSTRACT

We have demonstrated an efficient synthetic route with crystal structures for the construction of acidic pH-triggered visible-to-NIR interchangeable ratiometric fluorescent pH sensors. This bioresponsive probe exhibits pH-sensitive reversible absorption/emission features, low cytotoxicity, a huge 322 nm bathochromic spectral shift with augmented quantum yield from neutral to acidic pH, high sensitivity and selective targeting ability of live-cell lysosomes with ideal pKa , off-to-on narrow NIR absorption/fluorescence signals with high molar absorption coefficient at acidic lysosomal lumen, and in-situ live-cell pH-activated ratiometric imaging of lysosomal pH. Selective staining and ratiometric pH imaging in human carcinoma live-cell lysosomes were monitored by dual-channel confocal laser scanning microscope using a pH-activatable organic fluorescent dye comprising a morpholine moiety for lysosome targeting and an acidic pH openable oxazolidine ring. Moreover, real-time tracking of lysosomes, 3D, and multicolor live-cell imaging have been achieved using the synthesized pH-activatable probe.


Subject(s)
Fluorescent Dyes , Lysosomes , Humans , HeLa Cells , Hydrogen-Ion Concentration , Fluorescent Dyes/chemistry , Lysosomes/chemistry , Diagnostic Imaging
13.
Org Lett ; 24(32): 5907-5912, 2022 08 19.
Article in English | MEDLINE | ID: mdl-35925778

ABSTRACT

We have designed and synthesized red fluorescent mechanically interlocked molecules with dual targeting functionality for live cancer cell specific active targeting followed by selective internalization and imaging of malignant lysosomes along with real-time tracking, 3D, and multicolor cellular imaging applications.


Subject(s)
Fluorescent Dyes , Neoplasms , Lysosomes , Neoplasms/diagnostic imaging , Staining and Labeling
14.
J Med Chem ; 65(3): 1662-1684, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35014841

ABSTRACT

The abnormal expression of protein methyltransferase (PMT) has been linked with many diseases such as diabetes, neurological disorders, and cancer. S-Adenyl-l-methionine (SAM) is a universal methyl donor and gets converted to S-adenyl-l-homocysteine (SAH), an endogenous competitive inhibitor of SAM. Initially developed SAM/SAH mimetic nucleoside analogues were pan methyltransferase inhibitors. The gradual understanding achieved through ligand-receptor interaction paved the way for various rational approaches of drug design leading to potent and selective nucleoside inhibitors. The present perspective is based on the systematic evolution of selective SAM-competitive heterocyclic non-nucleoside inhibitors from nucleoside inhibitors. This fascinating transition has resolved several issues inherent to nucleoside analogues such as poor pharmacokinetics leading to poor in vivo efficacy. The perspective has brought together various concepts and strategies of drug design that contributed to this rational transition. We firmly believe that the strategies described herein will serve as a template for the future development of drugs in general.


Subject(s)
Enzyme Inhibitors/therapeutic use , Protein-Arginine N-Methyltransferases/antagonists & inhibitors , Animals , Binding Sites , Cell Line, Tumor , Clinical Trials as Topic , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Humans , Protein Binding , Protein-Arginine N-Methyltransferases/chemistry , Protein-Arginine N-Methyltransferases/metabolism , S-Adenosylmethionine/chemistry
15.
Front Physiol ; 12: 787180, 2021.
Article in English | MEDLINE | ID: mdl-34955894

ABSTRACT

Wearable cardioverter defibrillator (WCD) is a life saving, wearable, noninvasive therapeutic device that prevents fatal ventricular arrhythmic propagation that leads to sudden cardiac death (SCD). WCD are frequently prescribed to patients deemed to be at high arrhythmic risk but the underlying pathology is potentially reversible or to those who are awaiting an implantable cardioverter-defibrillator. WCD is programmed to detect appropriate arrhythmic events and generate high energy shock capable of depolarizing the myocardium and thus re-initiating the sinus rhythm. WCD guidelines dictate very high reliability and accuracy to deliver timely and optimal therapy. Computational model-based process validation can verify device performance and benchmark the device setting to suit personalized requirements. In this article, we present a computational pipeline for WCD validation, both in terms of shock classification and shock optimization. For classification, we propose a convolutional neural network-"Long Short Term Memory network (LSTM) full form" (Convolutional neural network- Long short term memory network (CNN-LSTM)) based deep neural architecture for classifying shockable rhythms like Ventricular Fibrillation (VF), Ventricular Tachycardia (VT) vs. other kinds of non-shockable rhythms. The proposed architecture has been evaluated on two open access ECG databases and the classification accuracy achieved is in adherence to American Heart Association standards for WCD. The computational model developed to study optimal electrotherapy response is an in-silico cardiac model integrating cardiac hemodynamics functionality and a 3D volume conductor model encompassing biophysical simulation to compute the effect of shock voltage on myocardial potential distribution. Defibrillation efficacy is simulated for different shocking electrode configurations to assess the best defibrillator outcome with minimal myocardial damage. While the biophysical simulation provides the field distribution through Finite Element Modeling during defibrillation, the hemodynamic module captures the changes in left ventricle functionality during an arrhythmic event. The developed computational model, apart from acting as a device validation test-bed, can also be used for the design and development of personalized WCD vests depending on subject-specific anatomy and pathology.

16.
Small ; 17(51): e2104416, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34651425

ABSTRACT

To mitigate the associated challenges of instability and capacity improvement in Na3 V2 (PO4 )2 F3  (NVPF), rationally designed uniformly distributed hollow spherical NVPF and coating the surface of NVPF with ultrathin (≈2 nm) amorphous TiO2  by atomic layer deposition is demonstrated. The coating facilitates higher mobility of the ion through the cathode electrolyte interphase (CEI) and enables higher capacity during cycling. The TiO2 @NVPF exhibit discharge capacity of >120 mAhg-1 , even at 1C rates, and show lower irreversible capacity in the first cycle. Further, nearly 100% capacity retention after rate performance in high current densities and 99.9% coulombic efficiency after prolonged cycling in high current density is reported. The improved performance in TiO2 @NVPF is ascribed to the passivation behavior of TiO2  coating which protects the surface of NVPF from volume expansion, significantly less formation of carbonates, and decomposition of electrolyte, which is also validated through post cycling analysis. The study shows the importance of ultrathin surface protection artificial CEI for advanced sodium-ion battery cathodes. The protection layer is diminishing parasitic reaction, which eventually enhances the Na ion participation in reaction and stabilizes the cathode structure.

17.
ChemSusChem ; 14(21): 4690-4696, 2021 Nov 04.
Article in English | MEDLINE | ID: mdl-34339584

ABSTRACT

In recent decades, rechargeable Mg batteries (RMBs) technologies have attracted much attention because the use of thin Mg foil anodes may enable development of high-energy-density batteries. One of the most critical challenges for RMBs is finding suitable electrolyte solutions that enable efficient and reversible Mg cells operation. Most RMB studies concentrate on the development of novel electrolyte systems, while only few studies have focused on the practical feasibility of using pure metallic Mg as the anode material. Pure Mg metal anodes have been demonstrated to be useful in studying the fundamentals of nonaqueous Mg electrochemistry. However, pure Mg metal may not be suitable for mass production of ultrathin foils (<100 microns) due to its limited ductility. The metals industry overcomes this problem by using ductile Mg alloys. Herein, the feasibility of processing ultrathin Mg anodes in electrochemical cells was demonstrated by using AZ31 Mg alloys (3 % Al; 1 % Zn). Thin-film Mg AZ31 anodes presented reversible Mg dissolution and deposition behavior in complex ethereal Mg electrolytes solutions that was comparable to that of pure Mg foils. Moreover, it was demonstrated that secondary Mg battery prototypes comprising ultrathin AZ31 Mg alloy anodes (≈25 µm thick) and Mgx Mo6 S8 Chevrel-phase cathodes exhibited cycling performance equal to that of similar cells containing thicker pure Mg foil anodes. The possibility of using ultrathin processable Mg metal anodes is an important step in the realization of rechargeable Mg batteries.

18.
J Med Chem ; 64(13): 9279-9301, 2021 07 08.
Article in English | MEDLINE | ID: mdl-34142551

ABSTRACT

Several toll-like receptors (TLRs) reside inside endosomes of specific immune cells-among them, aberrant activation of TLR7 and TLR9 is implicated in myriad contexts of autoimmune diseases, making them promising therapeutic targets. However, small-molecule TLR7 and TLR9 antagonists are not yet available for clinical use. We illustrate here the importance of C2, C6, and N9 substitutions in the purine scaffold for antagonism to TLR7 and TLR9 through structure-activity relationship studies using cellular reporter assays and functional studies on primary human immune cells. Further in vitro and in vivo pharmacokinetic studies identified an orally bioavailable lead compound 29, with IC50 values of 0.08 and 2.66 µM against TLR9 and TLR7, respectively. Isothermal titration calorimetry excluded direct TLR ligand-antagonist interactions. In vivo antagonism efficacy against mouse TLR9 and therapeutic efficacy in a preclinical murine model of psoriasis highlighted the potential of compound 29 as a therapeutic candidate in relevant autoimmune contexts.


Subject(s)
Purines/pharmacology , Toll-Like Receptor 7/antagonists & inhibitors , Toll-Like Receptor 9/antagonists & inhibitors , Administration, Oral , Animals , Cell Line , Dose-Response Relationship, Drug , Humans , Mice , Mice, Inbred C57BL , Molecular Structure , Purines/administration & dosage , Purines/chemistry , Rats , Structure-Activity Relationship
19.
ACS Sens ; 6(6): 2141-2146, 2021 06 25.
Article in English | MEDLINE | ID: mdl-34125510

ABSTRACT

Here, we have designed and synthesized acidic pH-activatable visible to NIR switchable ratiometric pH-sensitive fluorescent dye. The design consists of a cell-permeable organic probe containing a lysosome targeting morpholine functionality and an acidic pH-activatable oxazolidine moiety. The visible closed oxazolidine form (λabs 418 nm) can be switched to the highly conjugated NIR Cy-7 form (λabs 780 nm) through ring opening of the oxazolidine moiety at acidic pH. This switching of the ratiometric fluorescent probe is highly reversible and can be controlled by pH. NMR, UV/vis, and fluorescence spectroscopies allowed monitoring of pH switching behavior of the probe. This bioresponsive in situ acidic organelle activatable fluorophore showed reversible pH-switchable ratiometric optical properties, high photostability, huge bathochromic emission shift of 320 nm from basic to acidic pH, off-to-on narrow NIR absorption and emission bands with enhanced molar extinction coefficient at lysosomal pH, good quantum yield, low cytotoxicity, and targeted imaging ability of live cell lysosomes with ideal pKa. The report demonstrated ratiometric imaging with improved specificity of the acidic lysosome while minimizing signals at the NIR region from nontargeted neutral or basic organelles in human carcinoma HeLa and A549 as well as rat healthy H9c2(2-1) live cells, which is monitored by confocal laser scanning microscopy.


Subject(s)
Fluorescent Dyes , Lysosomes , Animals , HeLa Cells , Humans , Hydrogen-Ion Concentration , Rats , Spectrometry, Fluorescence
20.
Heliyon ; 7(5): e06889, 2021 May.
Article in English | MEDLINE | ID: mdl-34027148

ABSTRACT

Fipronil -a broad spectrum phenylpyrazole insecticide has high level of toxicity towards environment. Therefore, an easy and reliable analytical method was developed for residue estimation of fipronil to ensure food and environmental safety. A modified QuEChERS technique was followed for estimation of fipronil (5% SC) in paddy ecosystem using GC-ECD and confirmation by GC-MS/MS. The initial residues (0.168-0.794 µg g-1) of total fipronil i.e., sum of fipronil and its metabolites (viz., desulfinyl and sulfone) in leaf and soil were dissipated following first order kinetics. About 92-96% of fipronil residues were degraded after 15 days with half-life of 3.4-4.1 days and pre-harvest interval of 19.4-25.7 days in plant. Residues were below level of quantification (<0.005 µg g-1) in plant and soil at harvest. The fipronil residues in rice grain present low dietary risk (RQd < 1) to human health. However, high risk (RQd > 1) was predicted for cattle health due to fipronil residues in paddy leaf up to 10 days. The residual level in soil was also at highrisk (RQs > 1) for soil ecological health.

SELECTION OF CITATIONS
SEARCH DETAIL
...