Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 97
Filter
1.
Neurol Int ; 16(2): 419-431, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38668128

ABSTRACT

Therapeutic antibodies for reducing Aß plaque load in Alzheimer's disease (AD) is currently making rapid progress. The diagnostic imaging of Aß plaque load in AD has been underway and is now used in clinical studies. Here, we report our preliminary findings on imaging a therapeutic antibody, Lecanemab, in a postmortem AD brain anterior cingulate. [125I]5-iodo-3-pyridinecarboxamido-Lecanemab ([125I]IPC-Lecanemab) was prepared by coupling N-succinimidyl-5-([125I]iodo)-3-pyridinecarboxylate with Lecanemab in modest yields. The distinct binding of [125I]IPC-Lecanemab to Aß-rich regions in postmortem human AD brains was higher in grey matter (GM) containing Aß plaques compared to white matter (WM) (GM/WM was 1.6). Anti-Aß immunostaining was correlated with [125I]IPC-Lecanemab regional binding in the postmortem AD human brains. [125I]IPC-Lecanemab binding was consistent with the binding of Aß small molecules, [18F]flotaza and [125I]IBETA, in the same subjects. [18F]Flotaza and [125I]IBETA, however, exhibited significantly higher GM/WM ratios (>20) compared to [125I]IPC-Lecanemab. Our results suggest that radiolabeled [125I]IPC-Lecanemab retains the ability to bind to Aß in human AD and may therefore be useful as a PET imaging radiotracer when labeled as [124I]IPC-Lecanemab. The ability to directly visualize in vivo a promising therapeutic antibody for AD may be useful in treatment planning and dosing and could be complimentary to small-molecule diagnostic imaging to assess outcomes of therapeutic interventions.

2.
J Labelled Comp Radiopharm ; 67(1): 31-36, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37927198

ABSTRACT

The α4ß2 nicotinic acetylcholine receptor (nAChR) ligand 2-[18 F]fluoro-3-[2-((S)-3-pyrrolinyl)methoxy]pyridine ([18 F]nifene) has been synthesized in 10% decay-corrected radiochemical yield using the IBA Synthera® platform (IBA Cyclotron Solutions, Louvain-la-Neuve, Belgium) with an integrated fluidic processor (IFP). Boc-nitronifene served as the precursor, and 20% trifluoroacetic acid (TFA) was used to deprotect the Boc-group after radiolabeling. By omitting the solvent extraction step after radiolabeling, the process was simplified to a single step with no manual intervention. [18 F]Nifene was obtained in decay-corrected radiochemical yields of 10 ± 2% (n = 20) and radiochemical purity >99%. Typical specific radioactivities of 2700-4865 mCi/µmole (100-180 GBq/µmol) were measured at the end of synthesis; total synthesis times were about 1 h 40 min.


Subject(s)
Pyridines , Receptors, Nicotinic , Pyrroles , Radiopharmaceuticals , Ligands
3.
Molecules ; 28(24)2023 Dec 16.
Article in English | MEDLINE | ID: mdl-38138615

ABSTRACT

Nicotinic acetylcholine receptors (nAChRs) are involved in various central nervous system functions and have also been implicated in several neurodegenerative disorders. The heteromeric α4ß2* and homomeric α7 are two major nAChR subtypes which have been studied in the brain using positron emission tomography (PET). Our comparative autoradiographic studies of the two receptor types in the mouse and rat brains show major differences in the thalamus (α4ß2* >> α7), hippocampus (α7 >> α4ß2*), and subiculum (α4ß2* >> α7). A relatively newer heteromeric α7ß2 nAChR subtype has been identified in the brain which may have a greater role in neurodegeneration. We report the development of KS7 (3-(2-(S)-azetidinylmethoxy)-5-(1,4-diaza-bicyclo[3.2.2]nonane)pyridine) which incorporates structural features of Nifzetidine (high affinity for α4ß2* nAChR) and ASEM (high affinity for α7 nAChR) in an effort to target α7 and ß2 subunits in α7ß2 nAChR. KS7 exhibited higher affinities (IC50 = 50 to 172 nM) for [3H]cytisine radiolabeled sites and weaker affinities (IC50 = 10 µM) for [125I]-α-bungarotoxin radiolabeled rat brain sites in several brain regions. The weaker affinity of KS7 to α7 nAChR may suggest lack of binding at the α7 subunit of α7ß2 nAChR. A radiolabeled derivative of KS7 may be required to identify any specific binding to brain regions suggested to contain α7ß2 nAChR.


Subject(s)
Receptors, Nicotinic , Rats , Mice , Animals , Receptors, Nicotinic/metabolism , alpha7 Nicotinic Acetylcholine Receptor/metabolism , Brain/diagnostic imaging , Brain/metabolism , Hippocampus/metabolism , Positron-Emission Tomography/methods
4.
Int J Mol Sci ; 24(21)2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37958495

ABSTRACT

Positron emission tomography (PET) radioligands that bind with high-affinity to α4ß2-type nicotinic receptors (α4ß2Rs) allow for in vivo investigations of the mechanisms underlying nicotine addiction and smoking cessation. Here, we investigate the use of an image-derived arterial input function and the cerebellum for kinetic analysis of radioligand binding in mice. Two radioligands were explored: 2-[18F]FA85380 (2-FA), displaying similar pKa and binding affinity to the smoking cessation drug varenicline (Chantix), and [18F]Nifene, displaying similar pKa and binding affinity to nicotine. Time-activity curves of the left ventricle of the heart displayed similar distribution across wild type mice, mice lacking the ß2-subunit for ligand binding, and acute nicotine-treated mice, whereas reference tissue binding displayed high variation between groups. Binding potential estimated from a two-tissue compartment model fit of the data with the image-derived input function were higher than estimates from reference tissue-based estimations. Rate constants of radioligand dissociation were very slow for 2-FA and very fast for Nifene. We conclude that using an image-derived input function for kinetic modeling of nicotinic PET ligands provides suitable results compared to reference tissue-based methods and that the chemical properties of 2-FA and Nifene are suitable to study receptor response to nicotine addiction and smoking cessation therapies.


Subject(s)
Receptors, Nicotinic , Tobacco Use Disorder , Mice , Animals , Nicotine/pharmacology , Nicotine/metabolism , Brain/metabolism , Tobacco Use Disorder/metabolism , Kinetics , Ligands , Positron-Emission Tomography/methods , Receptors, Nicotinic/genetics , Receptors, Nicotinic/metabolism
5.
Molecules ; 28(15)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37570739

ABSTRACT

Aggregation of Tau protein into paired helical filaments causing neurofibrillary tangles (NFT) is a neuropathological feature in Alzheimer's disease (AD). This study aimed to develop and evaluate the effectiveness of a novel radioiodinated tracer, 4-[125I]iodo-3-(1H-pyrrolo[2,3-c]pyridine-1-yl)pyridine ([125I]INFT), for binding to Tau protein in postmortem human AD brain. Radiosynthesis of [125I]INFT was carried out using electrophilic destannylation by iodine-125 and purified chromatographically. Computational modeling of INFT binding on Tau fibril was compared with IPPI. In vitro, autoradiography studies were conducted with [125I]INFT for Tau in AD and cognitively normal (CN) brains. [125I]INFT was produced in >95% purity. Molecular modeling of INFT revealed comparable binding energies to IPPI at site-1 of the Tau fibril with an affinity of IC50 = 7.3 × 10-8 M. Binding of [125I]INFT correlated with the presence of Tau in the AD brain, confirmed by anti-Tau immunohistochemistry. The ratio of average grey matter (GM) [125I]INFT in AD versus CN was found to be 5.9, and AD GM/white matter (WM) = 2.5. Specifically bound [125I]INFT to Tau in AD brains was displaced by IPPI (>90%). Monoamine oxidase inhibitor deprenyl had no effect and clorgyline had little effect on [125I]INFT binding. [125I]INFT is a less lipophilic imaging agent for Tau in AD.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/metabolism , tau Proteins/metabolism , Brain/metabolism , Pyridines/pharmacology
6.
Int J Mol Sci ; 24(13)2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37445985

ABSTRACT

Increased monoamine oxidase-A (MAO-A) activity in Alzheimer's disease (AD) may be detrimental to the point of neurodegeneration. To assess MAO-A activity in AD, we compared four biomarkers, Aß plaques, tau, translocator protein (TSPO), and MAO-A in postmortem AD. Radiotracers were [18F]FAZIN3 for MAO-A, [18F]flotaza and [125I]IBETA for Aß plaques, [124/125I]IPPI for tau, and [18F]FEPPA for TSPO imaging. Brain sections of the anterior cingulate (AC; gray matter GM) and corpus callosum (CC; white matter WM) from cognitively normal control (CN, n = 6) and AD (n = 6) subjects were imaged using autoradiography and immunostaining. Using competition with clorgyline and (R)-deprenyl, the binding of [18F]FAZIN3 was confirmed to be selective to MAO-A levels in the AD brain sections. Increases in MAO-A, Aß plaque, tau, and TSPO activity were found in the AD brains compared to the control brains. The [18F]FAZIN3 ratio in AD GM versus CN GM was 2.80, suggesting a 180% increase in MAO-A activity. Using GM-to-WM ratios of AD versus CN, a >50% increase in MAO-A activity was observed (AD/CN = 1.58). Linear positive correlations of [18F]FAZIN3 with [18F]flotaza, [125I]IBETA, and [125I]IPPI were measured and suggested an increase in MAO-A activity with increases in Aß plaques and tau activity. Our results support the finding that MAO-A activity is elevated in the anterior cingulate cortex in AD and thus may provide a new biomarker for AD in this brain region.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Monoamine Oxidase/metabolism , Iodine Radioisotopes/metabolism , Brain/diagnostic imaging , Brain/metabolism , Positron-Emission Tomography/methods , tau Proteins/metabolism , Amyloid beta-Peptides/metabolism , Receptors, GABA/metabolism
7.
Biomedicines ; 11(4)2023 Mar 27.
Article in English | MEDLINE | ID: mdl-37189652

ABSTRACT

High-resolution scans of immunohistochemical (IHC) stains of Alzheimer's disease (AD) brain slices and radioligand autoradiography both provide information about the distribution of Aß plaques and Tau, the two common proteinopathies in AD. Accurate assessment of the amount and regional location of Aß plaques and Tau is essential to understand the progression of AD pathology. Our goal was to develop a quantitative method for the analysis of IHC-autoradiography images. Postmortem anterior cingulate (AC) and corpus callosum (CC) from AD and control (CN) subjects were IHC stained with anti-Aß for Aß plaques and autoradiography with [18F]flotaza and [125I]IBETA for Aß plaques. For Tau, [124I]IPPI, a new radiotracer, was synthesized and evaluated in the AD brain. For Tau imaging, brain slices were IHC stained with anti-Tau and autoradiography using [125I]IPPI and [124I]IPPI. Annotations for Aß plaques and Tau using QuPath for training and pixel classifiers were generated to measure the percent of the area of Aß plaques and Tau in each slice. The binding of [124I]IPPI was observed in all AD brains with an AC/CC ratio > 10. Selectivity to Tau was shown by blocking [124I]IPPI with MK-6240. Percent positivity for Aß plaques was 4-15%, and for Tau, it was 1.3 to 35%. All IHC Aß plaque-positive subjects showed [18F]flotaza and [125I]IBETA binding with a positive linear correlation (r2 > 0.45). Tau-positive subjects showed [124/125I]IPPI binding with a stronger positive linear correlation (r2 > 0.80). This quantitative IHC-autoradiography approach provides an accurate measurement of Aß plaques and Tau within and across subjects.

8.
Synapse ; 77(3): e22265, 2023 05.
Article in English | MEDLINE | ID: mdl-36749986

ABSTRACT

Since cholinergic dysfunction has been implicated in Alzheimer's disease (AD), the effects of Aß plaques on nicotinic acetylcholine receptors (nAChRs) α4ß2* subtype were studied using the transgenic 5xFAD mouse model of AD. Using the PET radiotracer [18 F]nifene for α4ß2* nAChRs, in vitro autoradiography and in vivo PET/CT studies in 5xFAD mice were carried out and compared with wild-type (C57BL/6) mice. Ratios of [18 F]nifene binding in brain regions versus cerebellum (CB) in 5xFAD mice brains were for thalamus (TH) = 17, hippocampus-subiculum = 7, frontal cortex (FC) = 5.5, and striatum = 4.7. [125 I]IBETA and immunohistochemistry (IHC) in 5xFAD brain slices confirmed Aß plaques. Nicotine and acetylcholine displaced [18 F]nifene in 5xFAD mice (IC50 nicotine = 31-73 nM; ACh = 38-83 nM) and C57BL/6 (IC50 nicotine = 16-18 nM; ACh = 34-55 nM). Average [18 F]nifene SUVR (CB as reference) in 5xFAD mice was significantly higher in FC = 3.04 compared to C57BL/6 mice FC = 1.92 (p = .001), whereas TH difference between 5xFAD mice (SUVR = 2.58) and C57BL/6 mice (SUVR = 2.38) was not significant. Nicotine-induced dissociation half life (t1/2 ) of [18 F]nifene for TH were 37 min for 5xFAD mice and 26 min for C57BL/6 mice. Dissociation half life  for FC in C57BL/6 mice was 77 min , while no dissociation of [18 F]nifene occurred in the medial prefrontal cortex (mFC) of 5xFAD mice. Coregistration of [18 F]nifene PET with MR suggested that the mPFC, and anterior cingulate (AC) regions exhibited high uptake in 5xFAD mice compared to C57BL/6 mice. Ex vivo [18 F]nifene and in vitro [125 I]IBETA Aß plaque autoradiography after in vivo PET/CT scan of 5xFAD mouse brain were moderately correlated (r2 = 0.68). In conclusion, 5xFAD mice showed increased non-displaceable [18 F]nifene binding in mPFC.


Subject(s)
Alzheimer Disease , Receptors, Nicotinic , Mice , Animals , Positron Emission Tomography Computed Tomography , Nicotine , Mice, Transgenic , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Positron-Emission Tomography/methods , Mice, Inbred C57BL , Brain/diagnostic imaging , Brain/metabolism , Receptors, Nicotinic/metabolism , Disease Models, Animal
9.
Molecules ; 28(2)2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36677925

ABSTRACT

Radioiodinated imaging agents for Aß amyloid plaque imaging in Alzheimer's disease (AD) patients have not been actively pursued. Our previous studies employed the "diaza" derivatives [11C]TAZA and [18F]flotaza in order to develop successful positron emission tomography (PET) imaging agents for Aß plaques. There is a need for radioiodinated imaging agents for Aß plaques for single photon emission computed tomography (SPECT) and PET imaging. We report our findings on the preparation of [124/125I]IAZA, a "diaza" analog of [11C]TAZA and [18F]flotaza, and the evaluation of binding to Aß plaques in the postmortem human AD brain. The binding affinity of IAZA for Aß plaques was Ki = 10.9 nM with weak binding affinity for neurofibrillary tangles (Ki = 3.71 µM). Both [125I]IAZA and [124I]IAZA were produced in >25% radiochemical yield and >90% radiochemical purity. In vitro binding of [125I]IAZA and [124I]IAZA in postmortem human AD brains was higher in gray matter containing Aß plaques compared to white matter (ratio of gray to white matter was >7). Anti-Aß immunostaining strongly correlated with [124/125I]IAZA in postmortem AD human brains. The binding of [124/125I]IAZA in postmortem human AD brains was displaced by the known Aß plaque imaging agents. Thus, radiolabeled [124/123I]IAZA may potentially be a useful PET or SPECT radioligand for Aß plaques in brain imaging studies.


Subject(s)
Alzheimer Disease , Humans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Iodine Radioisotopes/metabolism , Positron-Emission Tomography/methods , Brain/diagnostic imaging , Brain/metabolism , Plaque, Amyloid/diagnostic imaging , Plaque, Amyloid/metabolism , Amyloid beta-Peptides/metabolism
10.
J Neurosci ; 43(1): 2-13, 2023 01 04.
Article in English | MEDLINE | ID: mdl-36028313

ABSTRACT

A question relevant to nicotine addiction is how nicotine and other nicotinic receptor membrane-permeant ligands, such as the anti-smoking drug varenicline (Chantix), distribute in brain. Ligands, like varenicline, with high pKa and high affinity for α4ß2-type nicotinic receptors (α4ß2Rs) are trapped in intracellular acidic vesicles containing α4ß2Rs in vitro Nicotine, with lower pKa and α4ß2R affinity, is not trapped. Here, we extend our results by imaging nicotinic PET ligands in vivo in male and female mouse brain and identifying the trapping brain organelle in vitro as Golgi satellites (GSats). Two PET 18F-labeled imaging ligands were chosen: [18F]2-FA85380 (2-FA) with varenicline-like pKa and affinity and [18F]Nifene with nicotine-like pKa and affinity. [18F]2-FA PET-imaging kinetics were very slow consistent with 2-FA trapping in α4ß2R-containing GSats. In contrast, [18F]Nifene kinetics were rapid, consistent with its binding to α4ß2Rs but no trapping. Specific [18F]2-FA and [18F]Nifene signals were eliminated in ß2 subunit knock-out (KO) mice or by acute nicotine (AN) injections demonstrating binding to sites on ß2-containing receptors. Chloroquine (CQ), which dissipates GSat pH gradients, reduced [18F]2-FA distributions while having little effect on [18F]Nifene distributions in vivo consistent with only [18F]2-FA trapping in GSats. These results are further supported by in vitro findings where dissipation of GSat pH gradients blocks 2-FA trapping in GSats without affecting Nifene. By combining in vitro and in vivo imaging, we mapped both the brain-wide and subcellular distributions of weak-base nicotinic receptor ligands. We conclude that ligands, such as varenicline, are trapped in neurons in α4ß2R-containing GSats, which results in very slow release long after nicotine is gone after smoking.SIGNIFICANCE STATEMENT Mechanisms of nicotine addiction remain poorly understood. An earlier study using in vitro methods found that the anti-smoking nicotinic ligand, varenicline (Chantix) was trapped in α4ß2R-containing acidic vesicles. Using a fluorescent-labeled high-affinity nicotinic ligand, this study provided evidence that these intracellular acidic vesicles were α4ß2R-containing Golgi satellites (GSats). In vivo PET imaging with F-18-labeled nicotinic ligands provided additional evidence that differences in PET ligand trapping in acidic vesicles were the cause of differences in PET ligand kinetics and subcellular distributions. These findings combining in vitro and in vivo imaging revealed new mechanistic insights into the kinetics of weak base PET imaging ligands and the subcellular mechanisms underlying nicotine addiction.


Subject(s)
Receptors, Nicotinic , Tobacco Use Disorder , Mice , Animals , Male , Female , Nicotine/pharmacology , Varenicline/metabolism , Varenicline/pharmacology , Tobacco Use Disorder/metabolism , Ligands , Receptors, Nicotinic/metabolism , Positron-Emission Tomography/methods , Brain/metabolism
11.
Molecules ; 29(1)2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38202606

ABSTRACT

In an effort to further understand the challenges facing in vivo imaging probe development for the N-methyl-D-aspartate (NMDA) receptor ion channel, we have evaluated the effect of glutamate on the Alzheimer's disease (AD) brain. Human post-mortem AD brain slices of the frontal cortex and anterior cingulate were incubated with [3H]MK-801 and adjacent sections were tested for Aß and Tau. The binding of [3H]MK-801 was measured in the absence and presence of glutamate and glycine. Increased [3H]MK-801 binding in AD brains was observed at baseline and in the presence of glutamate, indicating a significant increase (>100%) in glutamate-induced NMDA ion channel activity in AD brains compared to cognitively normal brains. The glycine effect was lower, suggesting a decrease of the co-agonist effect of glutamate and glycine in the AD brain. Our preliminary findings suggest that the targeting of the NMDA ion channel as well as the glutamate site may be appropriate in the diagnosis and treatment of AD. However, the low baseline levels of [3H]MK-801 binding in the frontal cortex and anterior cingulate in the absence of glutamate and glycine indicate significant hurdles for in vivo imaging probe development and validation.


Subject(s)
Alzheimer Disease , Fabaceae , Humans , N-Methylaspartate/pharmacology , Alzheimer Disease/diagnostic imaging , Dizocilpine Maleate/pharmacology , Brain/diagnostic imaging , Ion Channels , Glutamic Acid , Glycine , Receptors, N-Methyl-D-Aspartate , Positron-Emission Tomography
12.
Cells ; 11(24)2022 12 10.
Article in English | MEDLINE | ID: mdl-36552764

ABSTRACT

Lewy bodies (LB) play a neuropathological role in Parkinson's disease (PD). Our goal was to evaluate LB using anti-ubiquitin immunohistochemistry (UIHC) and find correlations with monoamine oxidase-A (MAO-A) using imaging agent, [18F]FAZIN3. Human post-mortem anterior cingulate (AC) and corpus callosum (CC) from control subjects (CN), n = 6; age 81-90 LB = 0 and PD, n = 6, age 77-89, LB = III-IV were sectioned (10 µm slices). Brain slices were immunostained with anti-ubiquitin for LB (UIHC) and analyzed using QuPath for percent anti-ubiquitin per unit area (µm2). Adjacent brain slices were incubated with [18F]FAZIN3 and cortical layers I-III, IV-VI and CC (white matter) regions were quantified for the binding of [18F]FAZIN3. UIHC was correlated with [18F]FAZIN3 binding. All PD brains were positively UIHC stained and confirmed presence of LB. Outer cortical layers (I-III) of PD AC had 21% UIHC while inner layers (IV-VI) had >75% UIHC. In the CN brains LB were absent (<1% UIHC). Increased [18F]FAZIN3 binding to MAO-A in AC was observed in all PD subjects. [18F]FAZIN3 ratio in PD was AC/CC = 3.57 while in CN subjects it was AC/CC = 2.24. Increases in UIHC µm2 correlated with [18F]FAZIN3 binding to MAO-A in DLU/mm2. Increased [18F]FAZIN3 binding to MAO-A in PD is a potential novel "hot spot" PET imaging approach.


Subject(s)
Gyrus Cinguli , Lewy Bodies , Parkinson Disease , Aged , Aged, 80 and over , Humans , Biomarkers/metabolism , Gyrus Cinguli/metabolism , Gyrus Cinguli/pathology , Lewy Bodies/metabolism , Monoamine Oxidase/metabolism , Parkinson Disease/metabolism , Ubiquitin/metabolism
13.
Molecules ; 27(14)2022 Jul 17.
Article in English | MEDLINE | ID: mdl-35889425

ABSTRACT

Several fluorine-18-labeled PET ß-amyloid (Aß) plaque radiotracers for Alzheimer's disease (AD) are in clinical use. However, no radioiodinated imaging agent for Aß plaques has been successfully moved forward for either single-photon emission computed tomography (SPECT) or positron emission tomography (PET) imaging. Radioiodinated pyridyl benzofuran derivatives for the SPECT imaging of Aß plaques using iodine-123 and iodine-125 are being pursued. In this study, we assess the iodine-124 radioiodinated pyridyl benzofuran derivative 5-(5-[124I]iodobenzofuran-2-yl)-N,N-dimethylpyridin-2-amine ([124I]IBETA) (Ki = 2.36 nM) for utilization in PET imaging for Aß plaques. We report our findings on the radioiododestannylation reaction used to prepare [124/125I]IBETA and evaluate its binding to Aß plaques in a 5 × FAD mouse model and postmortem human AD brain. Both [125I]IBETA and [124I]IBETA are produced in >25% radiochemical yield and >85% radiochemical purity. The in vitro binding of [125I]IBETA and [124I]IBETA in transgenic 5 × FAD mouse model for Aß plaques was high in the frontal cortex, anterior cingulate, thalamus, and hippocampus, which are regions of high Aß accumulation, with very little binding in the cerebellum (ratio of brain regions to cerebellum was >5). The in vitro binding of [125I]IBETA and [124I]IBETA in postmortem human AD brains was higher in gray matter containing Aß plaques compared to white matter (ratio of gray to white matter was >5). Anti-Aß immunostaining strongly correlated with [124/125I]IBETA regional binding in both the 5 × FAD mouse and postmortem AD human brains. The binding of [124/125I]IBETA in 5 × FAD mouse and postmortem human AD brains was displaced by the known Aß plaque imaging agent, Flotaza. Preliminary PET/CT studies of [124I]IBETA in the 5 × FAD mouse model suggested [124I]IBETA was relatively stable in vivo with a greater localization of [124I]IBETA in the brain regions with a high concentration of Aß plaques. Some deiodination was observed at later time points. Therefore, [124I]IBETA may potentially be a useful PET radioligand for Aß plaques in brain studies.


Subject(s)
Alzheimer Disease , Benzofurans , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Benzofurans/metabolism , Brain/diagnostic imaging , Brain/metabolism , Disease Models, Animal , Humans , Iodine Radioisotopes , Mice , Mice, Transgenic , Plaque, Amyloid/diagnostic imaging , Plaque, Amyloid/metabolism , Positron Emission Tomography Computed Tomography , Positron-Emission Tomography/methods , Radiopharmaceuticals/metabolism
14.
Psychiatry Res Neuroimaging ; 320: 111428, 2022 03.
Article in English | MEDLINE | ID: mdl-34954446

ABSTRACT

Diminished prefrontal function, dopaminergic abnormalities in the striatum and thalamus, reductions in white matter integrity and frontotemporal gray matter deficits are the most replicated findings in schizophrenia. We used four imaging modalities (18F-fluorodeoxyglucose and 18F-fallypride PET, diffusion tensor imaging, structural MRI) in 19 healthy and 25 schizophrenia subjects to assess the relationship between functional (dopamine D2/D3 receptor binding potential, glucose metabolic rate) and structural (fractional anisotropy, MRI) correlates of schizophrenia and their additive diagnostic prediction potential. Multivariate ANOVA was used to compare structural and functional image sets for identification of schizophrenia. Integration of data from all four modalities yielded better predictive power than less inclusive combinations, specifically in the thalamus, left dorsolateral prefrontal and temporal regions. Among the modalities, fractional anisotropy showed highest discrimination in white matter whereas 18F-fallypride binding showed highest discrimination in gray matter. Structural and functional modalities displayed comparable discriminative power but different topography, with higher sensitivity of structural modalities in the left prefrontal region. Combination of functional and structural imaging modalities with inclusion of both gray and white matter appears most effective in diagnostic discrimination. The highest sensitivity of 18F-fallypride PET to gray matter changes in schizophrenia supports the primacy of dopaminergic abnormalities in its pathophysiology.


Subject(s)
Fluorodeoxyglucose F18 , Schizophrenia , Benzamides , Diffusion Tensor Imaging , Humans , Magnetic Resonance Imaging , Positron-Emission Tomography , Schizophrenia/diagnosis
15.
Molecules ; 26(23)2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34885943

ABSTRACT

We report [18F]nifene binding to α4ß2* nicotinic acetylcholinergic receptors (nAChRs) in Parkinson's disease (PD). The study used transgenic Hualpha-Syn(A53T) PD mouse model of α-synucleinopathy for PET/CT studies in vivo and autoradiography in vitro. Additionally, postmortem human PD brain sections comprising of anterior cingulate were used in vitro to assess translation to human studies. Because the small size of mice brain poses challenges for PET imaging, improved methods for radiosynthesis of [18F]nifene and simplified PET/CT procedures in mice were developed by comparing intravenous (IV) and intraperitoneal (IP) administered [18F]nifene. An optimal PET/CT imaging time of 30-60 min post injection of [18F]nifene was established to provide thalamus to cerebellum ratio of 2.5 (with IV) and 2 (with IP). Transgenic Hualpha-Syn(A53T) mice brain slices exhibited 20-35% decrease while in vivo a 20-30% decrease of [18F]nifene was observed. Lewy bodies and α-synuclein aggregates were confirmed in human PD brain sections which lowered the [18F]nifene binding by more than 50% in anterior cingulate. Thus [18F]nifene offers a valuable tool for PET imaging studies of PD.


Subject(s)
Parkinson Disease/diagnostic imaging , Pyridines/analysis , Pyrroles/analysis , Receptors, Nicotinic/analysis , Synucleinopathies/diagnostic imaging , Animals , Brain/diagnostic imaging , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Transgenic , Positron Emission Tomography Computed Tomography/methods
16.
Brain Lang ; 223: 105046, 2021 12.
Article in English | MEDLINE | ID: mdl-34763166

ABSTRACT

Reading impairments are prominent trait-like features of cognitive deficits in schizophrenia, predictive of overall cognitive functioning and presumably linked to dopaminergic abnormalities. To evaluate this, we used 18F-fallypride PET in 19 healthy and 21 antipsychotic-naïve schizophrenia subjects and correlated dopamine receptor binding potentials in relevant AFNI-derived regions and voxelwise with group performance on WRAT4 single-word reading subtest. Healthy subjects' scores were positively and linearly associated with D2/D3 receptor availability in the rectus, orbital and superior frontal gyri, fusiform and middle temporal gyri, as well as middle occipital gyrus and precuneus, all predominantly in the left hemisphere and previously implicated in reading, hence suggesting that higher dopamine receptor density is cognitively advantageous. This relationship was weakened in schizophrenia subjects and in contrast to healthy participants followed an inverted U-shaped curve both in the cortex and dorsal striatum, indicating restricted optimal range of dopamine D2/D3 receptor availability for cognitive performance in schizophrenia.


Subject(s)
Schizophrenia , Cognition , Dopamine , Humans , Positron-Emission Tomography , Reading , Receptors, Dopamine D2/metabolism , Receptors, Dopamine D3/metabolism , Schizophrenia/diagnostic imaging , Schizophrenia/metabolism
17.
Front Neurosci ; 15: 676257, 2021.
Article in English | MEDLINE | ID: mdl-34211366

ABSTRACT

Transgenic mice line M83 that express the A53T mutant α-synuclein protein at six times the level of endogenous mice α-synuclein are a model of α-synucleinopathy found in Parkinson's disease (PD). This Hualpha-Syn (A53T) PD model is useful in assessing non-motor deficits at earlier stages of onset of PD. We report findings on metabolic changes using [18F]FDG PET/CT in the Hualpha-Syn (A53T) PD mouse model in comparison to non-carrier mice. Whole-body PET/CT imaging of male and female mice were carried out 2 h after [18F]FDG ip administration under 3% isoflurane anesthesia. Brain images were analyzed with PET images coregistered to a mouse brain MRI template. Hualpha-Syn (A53T) mice had significantly lower [18F]FDG uptake in several brain regions compared to the no-carrier mice. Significant hind limb muscle and lower spinal cord [18F]FDG hypometabolism at 9 months of age in A53T PD mice was also indicative of neurodegenerative disease, with a progressive motoric dysfunction leading to death. Significant decrease (up to 30%) in [18F]FDG uptake were observed in 9-month old male and female Hualpha-Syn (A53) mice. This is consistent with the cortical hypometabolism in PD patients. Hualpha-Syn (A53) mice may thus be a suitable model for studies related to PD α-synucleinopathy for the discovery of new biomarkers.

18.
Bioorg Med Chem Lett ; 46: 128164, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34082067

ABSTRACT

Positron emission tomographic (PET) studies of amyloid ß (Aß) accumulation in Alzheimer's disease (AD) have shown clinical utility. The aim of this study was to develop and evaluate the effectiveness of a new fluorine-18 radiotracer [18F]Flotaza (2-{2-[2-[18F]fluoroethoxy]ethoxy}ethoxy)-4'-N,N-dimethylaminoazobenzene), for Aß plaque imaging. Nucleophilic [18F]fluoride was used in a one-step radiosynthesis for [18F]flotaza. Using post mortem human AD brain tissues consisting of anterior cingulate (AC) and corpus callosum (CC), binding affinity of Flotaza, Ki = 1.68 nM for human Aß plaques and weak (>10-5 M) for Tau protein. Radiosynthesis of [18F]Flotaza was very efficient in high radiochemical yields (>25%) with specific activities >74 GBq/µmol. Brain slices from all AD subjects were positively immunostained with anti-Aß. Ratio of [18F]Flotaza in gray matter AC to white matter CC was >100 in all the 6 subjects. Very little white matter binding was seen. [18F]Flotaza binding in AC strongly correlated with anti-Aß immunostains. [18F]Flotaza is therefore a suitable fluorine-18 PET radiotracer for PET imaging studies of human Aß plaques.


Subject(s)
Alzheimer Disease/diagnosis , Brain/diagnostic imaging , Drug Development , Plaque, Amyloid/chemistry , Alzheimer Disease/metabolism , Humans , Molecular Structure , Positron-Emission Tomography
19.
Synapse ; 75(1): e22183, 2021 01.
Article in English | MEDLINE | ID: mdl-32722889

ABSTRACT

OBJECTIVE: Alzheimer's disease (AD) is a neurodegenerative disease characterized by aggregation of Tau protein into paired helical filaments causing neurofibrillary tangles (NFT) in the brain. The aim of this study was to develop and evaluate the effectiveness of a novel radioiodinated tracer, 6-[125 I]iodo-3-(1H-pyrrolo[2,3-c]pyridine-1-yl)isoquinoline ([125 I]IPPI), for binding to Tau protein (Ki = 0.75 nM) in postmortem human brain (AD and cognitively normal (CN). METHODS: Radiosynthesis of [125 I]IPPI was carried out by radioiododestannylation and purified chromatographically. Computational modeling studies of IPPI and MK-6240 binding on Tau fibril were evaluated. In vitro autoradiography studies were carried out with [3 H]PIB for Aß plaques and [125 I]IPPI for Tau in AD and CN brains and evaluate drug effects. RESULTS: [125 I]IPPI was produced in >95% purity. Molecular modeling of IPPI revealed binding energies of IPPI (-7.8, -8.1, -8.2, -7.5 Kcal/mol) at the four sites were comparable to MK-6240 (-8.7, -8.5, -8.3, -7.5 Kcal/mol). Ratio of average grey matter (GM) [125 I]IPPI in AD versus CN was found to be 7.31 (p = .07) and AD GM/ white matter (WM) = 4.35 (p = .09). Ratio of average GM/WM [125 I]IPPI in CN was 1.21. Binding of [125 I]IPPI correlated with the presence of Tau, confirmed by anti-Tau Dako A0024. Specifically bound [125 I]IPPI to Tau in AD brains was displaced by MK-6240 and IPPI (>90%). Monoamine oxidase inhibitors (MAO) inhibitors deprenyl and clorgyline effected [125 I]IPPI binding at >1 µM concentrations. CONCLUSION: [125 I]IPPI exhibited high binding in human AD frontal cortex and anterior cingulate and is a suitable radioiodinated ligand for Tau imaging.


Subject(s)
Alzheimer Disease/metabolism , Brain/metabolism , Iodine Radioisotopes/metabolism , Isoquinolines/metabolism , tau Proteins/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/pathology , Autopsy , Autoradiography/methods , Binding Sites/physiology , Brain/pathology , Drug Development/methods , Female , Humans , Isoquinolines/chemistry , Male , Middle Aged , Pyridines/chemistry , Pyridines/metabolism
20.
Am J Nucl Med Mol Imaging ; 10(2): 95-105, 2020.
Article in English | MEDLINE | ID: mdl-32419978

ABSTRACT

Alpha-klotho is a single-pass membrane protein primarily expressed by the kidneys. Klotho deficiency in chronic kidney disease contributes to an accelerated aging phenotype. We report here development of [89Zr]DFO-anti-klotho positron emission tomography (PET) imaging as a novel non-invasive method for assessing whole-body alpha-klotho distribution. Rat monoclonal anti-mouse klotho antibody was reacted with SCN-Bn-deferoxamine (DFO) and was radiolabeled using Zirconium-89. In vitro testing of [89Zr]DFO-anti-mKlotho was done in a distal convoluted tubule kidney cell line and with 40-micron whole kidney sections from C57BL/6J mice. Competitive binding was assessed in co-incubation studies with unlabeled anti-mKlotho antibody. For in vivo testing, C57BL/6J mice were injected retro-orbitally with [89Zr]DFO-anti-mKlotho and were scanned using Inveon PET/CT. Autoradiographs of kidney sections were obtained post-imaging on select animals. Radiochemical yield of [89Zr]DFO-anti-mKlotho was >70% and radiochemical purity was confirmed by iTLC. Specific binding in the kidney cell line was reduced by 60% in the presence of unlabeled anti-mKlotho. In the PET/CT scans, initial uptake of [89Zr]DFO-anti-mKlotho was observed in the intestines and liver. Selective retention of radioactivity was observed in the kidneys in the subsequent 24, 48, and 72 hrs scans with cortical binding of [89Zr]DFO-anti-mKlotho clearly visualized. Sites of lower alpha-klotho expression were not visualized. In summary, we have successfully synthesized [89Zr]DFO-anti-mKlotho and our initial in vitro and in vivo studies in mice demonstrate selective binding in the kidney cortex, which is known to express high levels of alpha-klotho. PET imaging promises to be a novel tool for in vivo evaluation of alpha-klotho distribution.

SELECTION OF CITATIONS
SEARCH DETAIL
...