Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Struct Mol Biol ; 30(8): 1141-1152, 2023 08.
Article in English | MEDLINE | ID: mdl-37386215

ABSTRACT

Large heteromeric multiprotein complexes play pivotal roles at every step of gene expression in eukaryotic cells. Among them, the 20-subunit basal transcription factor TFIID nucleates the RNA polymerase II preinitiation complex at gene promoters. Here, by combining systematic RNA-immunoprecipitation (RIP) experiments, single-molecule imaging, proteomics and structure-function analyses, we show that human TFIID biogenesis occurs co-translationally. We discovered that all protein heterodimerization steps happen during protein synthesis. We identify TAF1-the largest protein in the complex-as a critical factor for TFIID assembly. TAF1 acts as a flexible scaffold that drives the co-translational recruitment of TFIID submodules preassembled in the cytoplasm. Altogether, our data suggest a multistep hierarchical model for TFIID biogenesis that culminates with the co-translational assembly of the complex onto the nascent TAF1 polypeptide. We envision that this assembly strategy could be shared with other large heteromeric protein complexes.


Subject(s)
TATA-Binding Protein Associated Factors , Transcription Factor TFIID , Humans , Cell Nucleus/metabolism , Multiprotein Complexes/chemistry , Promoter Regions, Genetic , TATA-Binding Protein Associated Factors/chemistry , Transcription Factor TFIID/metabolism
2.
bioRxiv ; 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37066372

ABSTRACT

Large heteromeric multiprotein complexes play pivotal roles at every step of gene expression in eukaryotic cells. Among them, the 20-subunit basal transcription factor TFIID nucleates RNA polymerase II preinitiation complex at gene promoters. Here, by combining systematic RNA-immunoprecipitation (RIP) experiments, single-molecule imaging, proteomics and structure-function analyses, we show that TFIID biogenesis occurs co-translationally. We discovered that all protein heterodimerization steps happen during protein synthesis. We identify TAF1 - the largest protein in the complex - as a critical factor for TFIID assembly. TAF1 acts as a flexible scaffold that drives the co-translational recruitment of TFIID submodules preassembled in the cytoplasm. Altogether, our data suggest a multistep hierarchical model for TFIID biogenesis that culminates with the co-translational assembly of the complex onto the nascent TAF1 polypeptide. We envision that this assembly strategy could be shared with other large heteromeric protein complexes.

3.
Eur Phys J C Part Fields ; 81(10): 943, 2021.
Article in English | MEDLINE | ID: mdl-34720712

ABSTRACT

We present a systematic framework to study the threshold contributions of the differential rapidity distribution for the production of any number of colorless particles in the hadronic colliders. This has been achieved based on the universality structure of the soft enhancements associated with the real emissions, along with the factorization property of the differential cross section and the renormalization group invariance. In this formalism, we present a universal soft-collinear operator to compute the soft virtual differential cross section for a generic 2 → n scattering process up to next-to-next-to-next-to-next-to-leading order ( N 4 LO) in perturbative QCD. We also provide a universal operator to perform the threshold resummation to next-to-next-to-next-to-leading logarithmic ( N 3 LL) accuracy. We explicitly present the approximate analytical results of the rapidity distributions at N 4 LO and N 3 LL for the Higgs boson production through gluon fusion and bottom quark annihilation, and also for the Drell-Yan production at the hadronic collider. We extend our framework to include the next to threshold contributions for the diagonal partonic channels.

4.
Cryobiology ; 96: 45-49, 2020 10.
Article in English | MEDLINE | ID: mdl-32861699

ABSTRACT

Patient derived xenograft (PDX) models provide an efficient way to study anti-tumor drug efficacy. In this respect, it is essential to study the optimal method needed to cryopreserve the starting cells obtained from tumor samples for PDX model generation. Cryopreservation of cells prior to xenografting is necessary for cross-verification of results obtained by xenografting and also for practical planning of experiments. In the present work, we studied the cryopreservation of colorectal carcinoma (CRC) cells isolated from patient tumor samples for generating their patient derived xenograft models. CRC therapeutics study is essential for early stage intervention and treatment of the disease. CRC cell lines do not ideally depict the molecular characteristics of patient CRC tumor samples. This necessitates the generation of CRC PDX models for drug discovery. We show that CRC cells isolated from patient tumor samples have comparable recovery, viability and growth with both conventional cryopreservation methods as well as Fibulas BioFlash Drive™. However, xenograft tumor formation was much more effective with Fibulas BioFlash Drive™ cryopreserved cells than with cells cryopreserved with conventional methods. Therefore, we put forward an effective way to cryopreserve primary cells obtained from patient tumor samples for PDX model generation in this study.


Subject(s)
Colorectal Neoplasms , Cryopreservation , Animals , Colorectal Neoplasms/drug therapy , Cryopreservation/methods , Family Characteristics , Heterografts , Humans , Xenograft Model Antitumor Assays
5.
Nat Commun ; 10(1): 1740, 2019 04 15.
Article in English | MEDLINE | ID: mdl-30988355

ABSTRACT

Cells dedicate significant energy to build proteins often organized in multiprotein assemblies with tightly regulated stoichiometries. As genes encoding subunits assembling in a multisubunit complex are dispersed in the genome of eukaryotes, it is unclear how these protein complexes assemble. Here, we show that mammalian nuclear transcription complexes (TFIID, TREX-2 and SAGA) composed of a large number of subunits, but lacking precise architectural details are built co-translationally. We demonstrate that dimerization domains and their positions in the interacting subunits determine the co-translational assembly pathway (simultaneous or sequential). The lack of co-translational interaction can lead to degradation of the partner protein. Thus, protein synthesis and complex assembly are linked in building mammalian multisubunit complexes, suggesting that co-translational assembly is a general principle in mammalian cells to avoid non-specific interactions and protein aggregation. These findings will also advance structural biology by defining endogenous co-translational building blocks in the architecture of multisubunit complexes.


Subject(s)
Protein Multimerization , Protein Subunits/metabolism , Exodeoxyribonucleases/chemistry , Exodeoxyribonucleases/metabolism , HeLa Cells , Humans , Phosphoproteins/chemistry , Phosphoproteins/metabolism , Protein Domains , Protein Folding , Protein Subunits/chemistry , TATA-Binding Protein Associated Factors/chemistry , TATA-Binding Protein Associated Factors/metabolism , Transcription Factor TFIID/chemistry , Transcription Factor TFIID/metabolism
6.
PLoS One ; 12(1): e0168165, 2017.
Article in English | MEDLINE | ID: mdl-28099440

ABSTRACT

An involvement of components of DNA-break repair (DBR) complex including DNA-dependent protein kinase (DNA-PK) and poly-ADP-ribose polymerase 1 (PARP-1) in transcription regulation in response to distinct cellular signalling has been revealed by different laboratories. Here, we explored the involvement of DNA-PK and PARP-1 in the heat shock induced transcription of Hsp70A1A. We find that inhibition of both the catalytic subunit of DNA-PK (DNA-PKc), and Ku70, a regulatory subunit of DNA-PK holo-enzyme compromises transcription of Hsp70A1A under heat shock treatment. In immunoprecipitation based experiments we find that Ku70 or DNA-PK holoenzyme associates with NFκB. This NFκB associated complex also carries PARP-1. Downregulation of both NFκB and PARP-1 compromises Hsp70A1A transcription induced by heat shock treatment. Alteration of three bases by site directed mutagenesis within the consensus κB sequence motif identified on the promoter affected inducibility of Hsp70A1A transcription by heat shock treatment. These results suggest that NFκB engaged with the κB motif on the promoter cooperates in Hsp70A1A activation under heat shock in human cells as part of a DBR complex including DNA-PK and PARP-1.


Subject(s)
DNA Repair/genetics , DNA Topoisomerases, Type II/genetics , DNA-Activated Protein Kinase/genetics , DNA-Binding Proteins/genetics , HSP70 Heat-Shock Proteins/genetics , NF-kappa B p50 Subunit/genetics , Poly (ADP-Ribose) Polymerase-1/genetics , Transcription Factor RelA/genetics , Catalytic Domain/genetics , Cell Line, Tumor , DNA Breaks , DNA-Activated Protein Kinase/metabolism , HSP70 Heat-Shock Proteins/biosynthesis , HeLa Cells , Humans , Ku Autoantigen/antagonists & inhibitors , Poly (ADP-Ribose) Polymerase-1/metabolism , Promoter Regions, Genetic/genetics , RNA Interference , RNA, Small Interfering/genetics , Transcription, Genetic/genetics , Up-Regulation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...