Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Appl Toxicol ; 44(6): 874-891, 2024 06.
Article in English | MEDLINE | ID: mdl-38327044

ABSTRACT

Chemotherapy with doxorubicin (Dox) can lead to cardiotoxic effects, presenting a major complication in cancer therapy. Diindolylmethane (DIM), derived from cruciferous vegetables like cabbage, exhibits numerous health benefits. However, its clinical application is limited because of low bioavailability and suboptimal natural concentrations in dietary sources. To address this limitation, we developed a processing methodology, specifically fermentation and boiling, to enhance DIM levels in cabbage. High-performance liquid chromatography (HPLC) analysis revealed a threefold DIM increase in fermented cabbage and a substantial ninefold increase in fermented-boiled cabbage compared to raw cabbage. To evaluate the clinical implications, we formulated a DIM-enriched diet and administered it to mice undergoing Dox treatment. Our in vivo results revealed that Dox treatment led to cardiotoxicity, manifested by changes in body and heart weight, increased mortality, and severe myocardial tissue degeneration. Dietary administration of the DIM-enriched diet enhanced antioxidant defenses and inhibited apoptosis in the cardiac tissue by interfering with mitoptosis and increasing antioxidant enzyme expression. Interestingly, we found that the DIM-enriched diet inhibited the nuclear translocation of NF-kB in cardiac tissue, thereby downregulating the expression of inflammatory mediators such as TNF-α and IL-6. Further, the DIM-enriched diet significantly reduced serum cardiac injury markers elevated by Dox treatment. These results suggest that the DIM-enriched cabbage diet can serve as a complementary dietary intervention for cancer patients undergoing chemotherapy. Further, our research highlights the role of plant-based diets in reducing treatment side effects and improving the quality of life for cancer patients.


Subject(s)
Brassica , Cardiotoxicity , Doxorubicin , Indoles , Animals , Doxorubicin/toxicity , Brassica/chemistry , Mice , Male , Apoptosis/drug effects , Mice, Inbred C57BL , Antibiotics, Antineoplastic/toxicity
2.
Gene ; 809: 146016, 2022 Jan 30.
Article in English | MEDLINE | ID: mdl-34655723

ABSTRACT

Chemoresistance is one of the major challenges in the treatment of breast cancer. Recent evidence suggests that epithelial-to-mesenchymal transition (EMT) plays a critical role in not only metastasis but also in chemoresistance, hence causing tumor relapse. This study aimed to identify the hub genes associated with EMT and chemoresistance in breast cancer affecting patient/clinical survival. Commonly differentially expressed genes (DEGs) during EMT and chemoresistance in breast cancer cells were identified using publicly available datasets, GSE23655, GSE39359, GSE33146 and GSE76540. Hierarchical clustering analysis was utilized to determine the commonly DEGs expression pattern in chemoresistant (CR) breast cancer cells. GSEA revealed that EMT-related genes sets were enriched in the CR samples. Further, we found that EMT-induced breast cancer cells showed overexpression of drug efflux transporters along with resistance to chemotherapeutic drug. Pathway enrichment analysis revealed that the commonly DEGs were enriched in immunological pathways, early endosome, protein dimerization, and proteoglycans in cancer. Further, we identified eight hub genes from the protein-protein interaction (PPI) network. We validated the gene expression levels of the hub genes among TCGA breast cancer samples using UALCAN. Survival analysis for the hub genes was performed using KM plotter, which showed a worse relapse-free survival (RFS) of the hub genes among breast cancer patients. In conclusion, this study identified eight hub genes that play an important role in the pathways underlying EMT-induced chemoresistance in breast cancer and can be used as therapeutic targets after clinical validation.


Subject(s)
Breast Neoplasms/genetics , Drug Resistance, Neoplasm/genetics , Epithelial-Mesenchymal Transition/genetics , Gene Expression Regulation, Neoplastic , Biomarkers, Tumor/genetics , Breast Neoplasms/drug therapy , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Cluster Analysis , Computational Biology/methods , Databases, Genetic , Epithelial-Mesenchymal Transition/drug effects , Female , Humans , MCF-7 Cells , Protein Interaction Maps/genetics , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL