Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 126
Filter
1.
ChemSusChem ; : e202301460, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38669480

ABSTRACT

The valorization of lignin, a currently underutilized component of lignocellulosic biomass, has attracted attention to promote a stable and circular bioeconomy. Successful approaches including thermochemical, biological, and catalytic lignin depolymerization have been demonstrated, enabling opportunities for lignino-refineries and lignocellulosic biorefineries. Although significant progress in lignin valorization has been made, this review describes unexplored opportunities in chemical and biological routes for lignin depolymerization and thereby contributes to economically and environmentally sustainable lignin-utilizing biorefineries. This review also highlights the integration of chemical and biological lignin depolymerization and identifies research gaps while also recommending future directions for scaling processes to establish a lignino-chemical industry.

2.
Metab Eng ; 82: 157-170, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38369052

ABSTRACT

Sustainable aviation fuel (SAF) will significantly impact global warming in the aviation sector, and important SAF targets are emerging. Isoprenol is a precursor for a promising SAF compound DMCO (1,4-dimethylcyclooctane) and has been produced in several engineered microorganisms. Recently, Pseudomonas putida has gained interest as a future host for isoprenol bioproduction as it can utilize carbon sources from inexpensive plant biomass. Here, we engineer metabolically versatile host P. putida for isoprenol production. We employ two computational modeling approaches (Bilevel optimization and Constrained Minimal Cut Sets) to predict gene knockout targets and optimize the "IPP-bypass" pathway in P. putida to maximize isoprenol production. Altogether, the highest isoprenol production titer from P. putida was achieved at 3.5 g/L under fed-batch conditions. This combination of computational modeling and strain engineering on P. putida for an advanced biofuels production has vital significance in enabling a bioproduction process that can use renewable carbon streams.


Subject(s)
Pseudomonas putida , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Carbon/metabolism , Metabolic Engineering
3.
Nucleic Acids Res ; 52(D1): D164-D173, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37930866

ABSTRACT

Plasmids are mobile genetic elements found in many clades of Archaea and Bacteria. They drive horizontal gene transfer, impacting ecological and evolutionary processes within microbial communities, and hold substantial importance in human health and biotechnology. To support plasmid research and provide scientists with data of an unprecedented diversity of plasmid sequences, we introduce the IMG/PR database, a new resource encompassing 699 973 plasmid sequences derived from genomes, metagenomes and metatranscriptomes. IMG/PR is the first database to provide data of plasmid that were systematically identified from diverse microbiome samples. IMG/PR plasmids are associated with rich metadata that includes geographical and ecosystem information, host taxonomy, similarity to other plasmids, functional annotation, presence of genes involved in conjugation and antibiotic resistance. The database offers diverse methods for exploring its extensive plasmid collection, enabling users to navigate plasmids through metadata-centric queries, plasmid comparisons and BLAST searches. The web interface for IMG/PR is accessible at https://img.jgi.doe.gov/pr. Plasmid metadata and sequences can be downloaded from https://genome.jgi.doe.gov/portal/IMG_PR.


Subject(s)
Metagenome , Microbiota , Humans , Metadata , Software , Databases, Genetic , Plasmids/genetics
4.
mBio ; : e0262223, 2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37991384

ABSTRACT

IMPORTANCE: We explore when and why large classes of proteins expand into new sequence space. We used an unsupervised machine learning approach to observe the sequence landscape of REC domains of bacterial response regulator proteins. We find that within-gene recombination can switch effector domains and, consequently, change the regulatory context of the duplicated protein.

5.
Curr Opin Biotechnol ; 84: 103016, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37924688

ABSTRACT

Microbial bioconversion provides access to a wide range of sustainably produced chemicals and commodities. However, industrial-scale bioproduction process operations are preferred to be anaerobic due to the cost associated with oxygen transfer. Anaerobic bioconversion generally offers limited substrate utilization profiles, lower product yields, and reduced final product diversity compared with aerobic processes. Bioproduction under conditions of reduced oxygen can overcome the limitations of fully aerobic and anaerobic bioprocesses, but many microbial hosts are not developed for low-oxygen bioproduction. Here, we describe advances in microbial strain engineering involving the use of redox cofactor engineering, genome-scale metabolic modeling, and functional genomics to enable improved bioproduction processes under low oxygen and provide a viable path for scaling these bioproduction systems to industrial scales.


Subject(s)
Genomics , Oxygen , Anaerobiosis , Oxidation-Reduction , Metabolic Engineering
6.
Cell Rep ; 42(9): 113087, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37665664

ABSTRACT

Maximizing the production of heterologous biomolecules is a complex problem that can be addressed with a systems-level understanding of cellular metabolism and regulation. Specifically, growth-coupling approaches can increase product titers and yields and also enhance production rates. However, implementing these methods for non-canonical carbon streams is challenging due to gaps in metabolic models. Over four design-build-test-learn cycles, we rewire Pseudomonas putida KT2440 for growth-coupled production of indigoidine from para-coumarate. We explore 4,114 potential growth-coupling solutions and refine one design through laboratory evolution and ensemble data-driven methods. The final growth-coupled strain produces 7.3 g/L indigoidine at 77% maximum theoretical yield in para-coumarate minimal medium. The iterative use of growth-coupling designs and functional genomics with experimental validation was highly effective and agnostic to specific hosts, carbon streams, and final products and thus generalizable across many systems.

7.
Nature ; 617(7960): 403-408, 2023 05.
Article in English | MEDLINE | ID: mdl-37138074

ABSTRACT

Biosynthesis is an environmentally benign and renewable approach that can be used to produce a broad range of natural and, in some cases, new-to-nature products. However, biology lacks many of the reactions that are available to synthetic chemists, resulting in a narrower scope of accessible products when using biosynthesis rather than synthetic chemistry. A prime example of such chemistry is carbene-transfer reactions1. Although it was recently shown that carbene-transfer reactions can be performed in a cell and used for biosynthesis2,3, carbene donors and unnatural cofactors needed to be added exogenously and transported into cells to effect the desired reactions, precluding cost-effective scale-up of the biosynthesis process with these reactions. Here we report the access to a diazo ester carbene precursor by cellular metabolism and a microbial platform for introducing unnatural carbene-transfer reactions into biosynthesis. The α-diazoester azaserine was produced by expressing a biosynthetic gene cluster in Streptomyces albus. The intracellularly produced azaserine was used as a carbene donor to cyclopropanate another intracellularly produced molecule-styrene. The reaction was catalysed by engineered P450 mutants containing a native cofactor with excellent diastereoselectivity and a moderate yield. Our study establishes a scalable, microbial platform for conducting intracellular abiological carbene-transfer reactions to functionalize a range of natural and new-to-nature products and expands the scope of organic products that can be produced by cellular metabolism.


Subject(s)
Azaserine , Azaserine/biosynthesis , Azaserine/chemistry , Biological Products/chemistry , Biological Products/metabolism , Multigene Family/genetics , Styrene/chemistry , Cyclopropanes/chemistry , Coenzymes/chemistry , Coenzymes/metabolism , Biocatalysis , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism
8.
Microb Biotechnol ; 16(3): 645-661, 2023 03.
Article in English | MEDLINE | ID: mdl-36691869

ABSTRACT

Pseudomonas putida has emerged as a promising host for the conversion of biomass-derived sugars and aromatic intermediates into commercially relevant biofuels and bioproducts. Most of the strain development studies previously published have focused on P. putida KT2440, which has been engineered to produce a variety of non-native bioproducts. However, P. putida is not capable of metabolizing pentose sugars, which can constitute up to 25% of biomass hydrolysates. Related P. putida isolates that metabolize a larger fraction of biomass-derived carbon may be attractive as complementary hosts to P. putida KT2440. Here we describe genetic tool development for P. putida M2, a soil isolate that can metabolize pentose sugars. The functionality of five inducible promoter systems and 12 ribosome binding sites was assessed to regulate gene expression. The utility of these expression systems was confirmed by the production of indigoidine from C6 and C5 sugars. Chromosomal integration and expression of non-native genes was achieved by using chassis-independent recombinase-assisted genome engineering (CRAGE) for single-step gene integration of biosynthetic pathways directly into the genome of P. putida M2. These genetic tools provide a foundation to develop hosts complementary to P. putida KT2440 and expand the ability of this versatile microbial group to convert biomass to bioproducts.


Subject(s)
Pseudomonas putida , Pseudomonas putida/genetics , Biosynthetic Pathways , Sugars/metabolism
9.
Curr Opin Biotechnol ; 79: 102870, 2023 02.
Article in English | MEDLINE | ID: mdl-36549106

ABSTRACT

Corynebacterium glutamicum, a natural glutamate-producing bacterium adopted for industrial production of amino acids, has been extensively explored recently for high-level biosynthesis of amino acid derivatives, bulk chemicals such as organic acids and short-chain alcohols, aromatics, and natural products, including polyphenols and terpenoids. Here, we review the recent advances with a focus on biosystem design principles, metabolic characterization and modeling, omics analysis, utilization of nonmodel feedstock, emerging CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) tools for Corynebacterium strain engineering, biosensors, and novel strains of C. glutamicum. Future research directions for developing C. glutamicum cell factories are also discussed.


Subject(s)
Biological Products , Corynebacterium glutamicum , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Metabolic Engineering , Amino Acids/metabolism , Clustered Regularly Interspaced Short Palindromic Repeats , Biological Products/metabolism
10.
Environ Microbiol ; 25(2): 493-504, 2023 02.
Article in English | MEDLINE | ID: mdl-36465038

ABSTRACT

The Pseudomonas putida group in the Gammaproteobacteria has been intensively studied for bioremediation and plant growth promotion. Members of this group have recently emerged as promising hosts to convert intermediates derived from plant biomass to biofuels and biochemicals. However, most strains of P. putida cannot metabolize pentose sugars derived from hemicellulose. Here, we describe three isolates that provide a broader view of the pentose sugar catabolism in the P. putida group. One of these isolates clusters with the well-characterized P. alloputida KT2440 (Strain BP6); the second isolate clustered with plant growth-promoting strain P. putida W619 (Strain M2), while the third isolate represents a new species in the group (Strain BP8). Each of these isolates possessed homologous genes for oxidative xylose catabolism (xylDXA) and a potential xylonate transporter. Strain M2 grew on arabinose and had genes for oxidative arabinose catabolism (araDXA). A CRISPR interference (CRISPRi) system was developed for strain M2 and identified conditionally essential genes for xylose growth. A glucose dehydrogenase was found to be responsible for initial oxidation of xylose and arabinose in strain M2. These isolates have illuminated inherent diversity in pentose catabolism in the P. putida group and may provide alternative hosts for biomass conversion.


Subject(s)
Pentoses , Pseudomonas putida , Pentoses/metabolism , Xylose/metabolism , Arabinose/metabolism , Pseudomonas putida/genetics , Pseudomonas putida/metabolism , Oxidative Stress
11.
Sci Rep ; 12(1): 22163, 2022 12 22.
Article in English | MEDLINE | ID: mdl-36550285

ABSTRACT

Engineered cyanobacterium Synechococcus elongatus can use light and CO2 to produce sucrose, making it a promising candidate for use in co-cultures with heterotrophic workhorses. However, this process is challenged by the mutual stresses generated from the multispecies microbial culture. Here we demonstrate an ecosystem where S. elongatus is freely grown in a photo-bioreactor (PBR) containing an engineered heterotrophic workhorse (either ß-carotene-producing Yarrowia lipolytica or indigoidine-producing Pseudomonas putida) encapsulated in calcium-alginate hydrogel beads. The encapsulation prevents growth interference, allowing the cyanobacterial culture to produce high sucrose concentrations enabling the production of indigoidine and ß-carotene in the heterotroph. Our experimental PBRs yielded an indigoidine titer of 7.5 g/L hydrogel and a ß-carotene titer of 1.3 g/L hydrogel, amounts 15-22-fold higher than in a comparable co-culture without encapsulation. Moreover, 13C-metabolite analysis and protein overexpression tests indicated that the hydrogel beads provided a favorable microenvironment where the cell metabolism inside the hydrogel was comparable to that in a free culture. Finally, the heterotroph-containing hydrogels were easily harvested and dissolved by EDTA for product recovery, while the cyanobacterial culture itself could be reused for the next batch of immobilized heterotrophs. This co-cultivation and hydrogel encapsulation system is a successful demonstration of bioprocess optimization under photobioreactor conditions.


Subject(s)
Alginates , Hydrogels , Coculture Techniques , beta Carotene , Ecosystem , Sucrose/metabolism , Photobioreactors
12.
Biotechnol Biofuels Bioprod ; 15(1): 137, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36510293

ABSTRACT

With the increasing need for microbial bioproduction to replace petrochemicals, it is critical to develop a new industrial microbial workhorse that improves the conversion of lignocellulosic carbon to biofuels and bioproducts in an economically feasible manner. Pseudomonas putida KT2440 is a promising microbial host due to its capability to grow on a broad range of carbon sources and its high tolerance to xenobiotics. In this study, we engineered P. putida KT2440 to produce isoprenoids, a vast category of compounds that provide routes to many petrochemical replacements. A heterologous mevalonate (MVA) pathway was engineered to produce potential biofuels isoprenol (C5) and epi-isozizaene (C15) for the first time in P. putida. We compared the difference between three different isoprenoid pathways in P. putida on isoprenol production and achieved 104 mg/L of isoprenol production in a batch flask experiment through optimization of the strain. As P. putida can natively consume isoprenol, we investigated how to prevent this self-consumption. We discovered that supplementing L-glutamate in the medium can effectively prevent isoprenol consumption in P. putida and metabolomics analysis showed an insufficient energy availability and an imbalanced redox status during isoprenol degradation. We also showed that the engineered P. putida strain can produce isoprenol using aromatic substrates such as p-coumarate as the sole carbon source, and this result demonstrates that P. putida is a valuable microbial chassis for isoprenoids to achieve sustainable biofuel production from lignocellulosic biomass.

13.
Microb Cell Fact ; 21(1): 254, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36482295

ABSTRACT

BACKGROUND: Rhodosporidium toruloides is capable of co-utilization of complex carbon sources and robust growth from lignocellulosic hydrolysates. This oleaginous yeast is therefore an attractive host for heterologous production of valuable bioproducts at high titers from low-cost, deconstructed biomass in an economically and environmentally sustainable manner. Here we demonstrate this by engineering R. toruloides to produce the polyketide triacetic acid lactone (TAL) directly from unfiltered hydrolysate deconstructed from biomass with minimal unit process operations. RESULTS: Introduction of the 2-pyrone synthase gene into R. toruloides enabled the organism to produce 2.4 g/L TAL from simple media or 2.0 g/L from hydrolysate produced from sorghum biomass. Both of these titers are on par with titers from other better-studied microbial hosts after they had been heavily engineered. We next demonstrate that filtered hydrolysates produced from ensiled sorghum are superior to those derived from dried sorghum for TAL production, likely due to the substantial organic acids produced during ensiling. We also demonstrate that the organic acids found in ensiled biomass can be used for direct synthesis of ionic liquids within the biomass pretreatment process, enabling consolidation of unit operations of in-situ ionic liquid synthesis, pretreatment, saccharification, and fermentation into a one-pot, separations-free process. Finally, we demonstrate this consolidation in a 2 L bioreactor using unfiltered hydrolysate, producing 3.9 g/L TAL. CONCLUSION: Many steps involved in deconstructing biomass into fermentable substrate can be combined into a distinct operation, and directly fed to cultures of engineered R. toruloides cultures for subsequent valorization into gram per liter titers of TAL in a cost-effective manner.

14.
Biotechnol Biofuels Bioprod ; 15(1): 126, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36397160

ABSTRACT

The strategy of synergistic application of biological and chemical catalysis is an important approach for efficiently converting renewable biomass into chemicals and fuels. In particular, the method of determining the appropriate intermediate between the two catalytic methods is critical. In this work, we demonstrate p-cymene production through the integration of biosynthesis and heterogenous catalysis and show how a preferred biologically derived precursor could be determined. On the biological side, we performed the limonene and 1,8-cineole production through the mevalonate pathway. Titers of 0.605 g/L and a 1.052 g/L were achieved, respectively. This difference is in agreement with the toxicity of these compounds toward the producing microorganisms, which has implications for subsequent development of the microbial platform. On the heterogeneous catalysis side, we performed the reaction with both biological precursors to allow for direct comparison. Using hydrogenation/dehydrogenation metals on supports with acid sites, both limonene and 1,8-cineole were converted to p-cymene with similar yields under equivalent reaction conditions. Thus, we could determine that the most promising strategy would be to target 1,8-cineole, the higher titer and lower toxicity bio-derived precursor with subsequent catalytic conversion to p-cymene. We further optimized the biological production of 1,8-cineole via fed-batch fermentation and reached the titer of 4.37 g/L which is the highest known 1,8-cineole titer from microbial production. This work provides a valuable paradigm for early stage considerations to determine the best route for the high-efficiency production of a target biobased molecule using an integration of biology and chemistry.

15.
Metab Eng Commun ; 15: e00206, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36158112

ABSTRACT

In this study, a 14-gene edited Pseudomonas putida KT2440 strain for heterologous indigoidine production was examined using three distinct omic datasets. Transcriptomic data indicated that CRISPR/dCpf1-interference (CRISPRi) mediated multiplex repression caused global gene expression changes, implying potential undesirable changes in metabolic flux. 13C-metabolic flux analysis (13C-MFA) revealed that the core P. putida flux network after CRISPRi repression was conserved, with moderate reduction of TCA cycle and pyruvate shunt activity along with glyoxylate shunt activation during glucose catabolism. Metabolomic results identified a change in intracellular TCA metabolites and extracellular metabolite secretion profiles (sugars and succinate overflow) in the engineered strains. These omic analyses guided further strain engineering, with a random mutagenesis screen first identifying an optimal ribosome binding site (RBS) for Cpf1 that enabled stronger product-substrate pairing (1.6-fold increase). Then, deletion strains were constructed with excision of the PHA operon (ΔphaAZC-IID) resulting in a 2.2-fold increase in indigoidine titer over the optimized Cpf1-RBS construct at the end of the growth phase (∼6 h). The maximum indigoidine titer (at 72 h) in the ΔphaAZC-IID strain had a 1.5-fold and 1.8-fold increase compared to the optimized Cpf1-RBS construct and the original strain, respectively. Overall, this study demonstrated that integration of omic data types is essential for understanding responses to complex metabolic engineering designs and directly quantified the effect of such modifications on central metabolism.

16.
Sci Rep ; 12(1): 10336, 2022 06 20.
Article in English | MEDLINE | ID: mdl-35725867

ABSTRACT

In this report, we systematically characterize 32 response regulators (RRs) from a metal tolerant groundwater isolate, Pseudomonas stutzeri RCH2 to assess the impact of host-derived post-translational phosphorylation. As observed by distinct shifted bands in a phos-tag gel, 12 of the 24 detected RRs show homogenous mixtures of phosphorylated proteins or heterogenous mixtures of unphosphorylated and phosphorylated proteins. By evaluating the phosphorylation state of CzcR and CopR II under varying assay parameters, we found that changes to pH and exogenous addition of phospho-donors (e.g. acetyl phosphate) have little to no effect on phosphorylation state. By applying protein production conditions that decrease the pool of intracellular acetyl-phosphate in E. coli, we found a reduction in the phosphorylated population of CopR II when magnesium was added to the medium, but observed no change in phosphorylated population when CopR II is expressed in E. coli BL21 (DE3) ∆pta, a mutant with a metabolic disruption to the acetyl-phosphate pathway. Therefore, the specific mechanism of post-translational phosphorylation of RRs in E. coli remains obscure. These findings show the importance of characterizing the phosphorylation state of proteins when heterologously expressed, since their biochemical and physiological properties can be dependent on post-translational modification.


Subject(s)
Escherichia coli , Pseudomonas stutzeri , Escherichia coli/genetics , Escherichia coli/metabolism , Phosphates/metabolism , Phosphorylation , Protein Processing, Post-Translational , Proteins/metabolism , Pseudomonas stutzeri/metabolism
17.
Microsyst Nanoeng ; 8: 31, 2022.
Article in English | MEDLINE | ID: mdl-35359611

ABSTRACT

We present a droplet-based microfluidic system that enables CRISPR-based gene editing and high-throughput screening on a chip. The microfluidic device contains a 10 × 10 element array, and each element contains sets of electrodes for two electric field-actuated operations: electrowetting for merging droplets to mix reagents and electroporation for transformation. This device can perform up to 100 genetic modification reactions in parallel, providing a scalable platform for generating the large number of engineered strains required for the combinatorial optimization of genetic pathways and predictable bioengineering. We demonstrate the system's capabilities through the CRISPR-based engineering of two test cases: (1) disruption of the function of the enzyme galactokinase (galK) in E. coli and (2) targeted engineering of the glutamine synthetase gene (glnA) and the blue-pigment synthetase gene (bpsA) to improve indigoidine production in E. coli.

18.
Appl Environ Microbiol ; 88(7): e0243021, 2022 04 12.
Article in English | MEDLINE | ID: mdl-35285712

ABSTRACT

Pseudomonas putida KT2440 has long been studied for its diverse and robust metabolisms, yet many genes and proteins imparting these growth capacities remain uncharacterized. Using pooled mutant fitness assays, we identified genes and proteins involved in the assimilation of 52 different nitrogen containing compounds. To assay amino acid biosynthesis, 19 amino acid drop-out conditions were also tested. From these 71 conditions, significant fitness phenotypes were elicited in 672 different genes including 100 transcriptional regulators and 112 transport-related proteins. We divide these conditions into 6 classes, and propose assimilatory pathways for the compounds based on this wealth of genetic data. To complement these data, we characterize the substrate range of three promiscuous aminotransferases relevant to metabolic engineering efforts in vitro. Furthermore, we examine the specificity of five transcriptional regulators, explaining some fitness data results and exploring their potential to be developed into useful synthetic biology tools. In addition, we use manifold learning to create an interactive visualization tool for interpreting our BarSeq data, which will improve the accessibility and utility of this work to other researchers. IMPORTANCE Understanding the genetic basis of P. putida's diverse metabolism is imperative for us to reach its full potential as a host for metabolic engineering. Many target molecules of the bioeconomy and their precursors contain nitrogen. This study provides functional evidence linking hundreds of genes to their roles in the metabolism of nitrogenous compounds, and provides an interactive tool for visualizing these data. We further characterize several aminotransferases, lactamases, and regulators, which are of particular interest for metabolic engineering.


Subject(s)
Pseudomonas putida , Amino Acids/metabolism , Nitrogen/metabolism , Phenotype , Pseudomonas putida/metabolism , Transaminases/genetics , Transaminases/metabolism
19.
J Am Chem Soc ; 144(2): 883-890, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34985270

ABSTRACT

The potential applications afforded by the generation and reactivity of artificial metalloenzymes (ArMs) in microorganisms are vast. We show that a non-pathogenic E. coli strain, Nissle 1917 (EcN), is a suitable host for the creation of ArMs from cytochrome P450s and artificial heme cofactors. An outer-membrane receptor in EcN transports an iridium porphyrin into the cell, and the Ir-CYP119 (CYP119 containing iridium porphyrin) assembled in vivo catalyzes carbene insertions into benzylic C-H bonds enantioselectively and site-selectively. The application of EcN as a whole-cell screening platform eliminates the need for laborious processing procedures, drastically increases the ease and throughput of screening, and accelerates the development of Ir-CYP119 with improved catalytic properties. Studies to identify the transport machinery suggest that a transporter different from the previously assumed ChuA receptor serves to usher the iridium porphyrin into the cytoplasm.


Subject(s)
Escherichia coli/metabolism , Evolution, Molecular , Metalloproteins/metabolism , Carbon/chemistry , Catalysis , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Hydrogen/chemistry , Iridium/chemistry , Metalloproteins/chemistry , Metalloproteins/genetics , Methane/analogs & derivatives , Methane/chemistry , Mutagenesis, Site-Directed , Porphyrins/chemistry , Stereoisomerism
20.
Front Bioeng Biotechnol ; 9: 766674, 2021.
Article in English | MEDLINE | ID: mdl-34869279

ABSTRACT

Corynebacterium glutamicum is an ideal microbial chassis for production of valuable bioproducts including amino acids and next generation biofuels. Here we resequence engineered isopentenol (IP) producing C. glutamicum BRC-JBEI 1.1.2 strain and assess differential transcriptional profiles using RNA sequencing under industrially relevant conditions including scale transition and compare the presence vs absence of an ionic liquid, cholinium lysinate ([Ch][Lys]). Analysis of the scale transition from shake flask to bioreactor with transcriptomics identified a distinct pattern of metabolic and regulatory responses needed for growth in this industrial format. These differential changes in gene expression corroborate altered accumulation of organic acids and bioproducts, including succinate, acetate, and acetoin that occur when cells are grown in the presence of 50 mM [Ch][Lys] in the stirred-tank reactor. This new genome assembly and differential expression analysis of cells grown in a stirred tank bioreactor clarify the cell response of an C. glutamicum strain engineered to produce IP.

SELECTION OF CITATIONS
SEARCH DETAIL
...