Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Phys Chem B ; 128(13): 3220-3235, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38520396

ABSTRACT

The liquid structure of three common ionic liquids (ILs) was investigated by neutron scattering for the first time. The ILs were based on the bis(trifluoromethanesulfonyl)imide anion, abbreviated in the literature as [NTf2]- or [TFSI]-, and on the following cations: 1-ethyl-3-methylimidazolium, [C2mim]+; 1-decyl-3-methylimidazolium, [C10mim]+; and trihexyl(tetradecyl)phosphonium, [P666,14]+. Comparative analysis of the three ILs confirmed increased size of nonpolar nanodomains with increasing bulk of alkyl chains. It also sheds light on the cation-anion interactions, providing experimental insight into strength, directionality, and angle of hydrogen bonds between protons on the imidazolium ring, as well as H-C-P protons in [P666,14]+, to oxygen and nitrogen atoms in the [NTf2]-. The new Dissolve data analysis package enabled, for the first time, the analysis of neutron scattering data of ILs with long alkyl chains, in particular, of [P666,14][NTf2]. Results generated with Dissolve were validated by comparing outputs from three different models, starting from three different sets of cation charges, for each of the three ILs, which gave convergent outcomes. Finally, a modified method for the synthesis of perdeuterated [P666,14][NTf2] has been reported, with the aim of reporting a complete set of synthetic and data processing approaches, laying robust foundations that enable the study of the phosphonium ILs family by neutron scattering.

2.
Chem Sci ; 15(9): 3104-3115, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38425537

ABSTRACT

We report the development of a versatile Ru-porphyrin catalyst system which performs the aerobic epoxidation of aromatic and aliphatic (internal) alkenes under mild conditions, with product yields of up to 95% and turnover numbers (TON) up to 300. Water is shown to play a crucial role in the reaction, significantly increasing catalyst efficiency and substrate scope. Detailed mechanistic investigations employing both computational studies and a range of experimental techniques revealed that water activates the RuVI di-oxo complex for alkene epoxidation via hydrogen bonding, stabilises the RuIV mono-oxo intermediate, and is involved in the regeneration of the RuVI di-oxo complex leading to oxygen atom exchange. Distinct kinetics are obtained in the presence of water, and side reactions involved in catalyst deactivation have been identified.

3.
ACS Catal ; 14(3): 1567-1574, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38327641

ABSTRACT

Wacker oxidations are ubiquitous in the direct synthesis of carbonyl compounds from alkenes. While the reaction mechanism has been widely studied under aerobic conditions, much less is known about such processes promoted with peroxides. Here, we report an exhaustive mechanistic investigation of the Wacker oxidation of styrene using hydrogen peroxide (H2O2) and tert-butyl hydroperoxide (TBHP) as oxidants by combining density functional theory and microkinetic modeling. Our results with H2O2 uncover a previously unreported reaction pathway that involves an intermolecular proton transfer assisted by the counterion [OTf]- present in the reaction media. Furthermore, we show that when TBHP is used as an oxidant instead of H2O2, the reaction mechanism switches to an intramolecular protonation sourced by the HOtBu moiety generated in situ. Importantly, these two mechanisms are predicted to outcompete the 1,2-hydride shift pathway previously proposed in the literature and account for the level of D incorporation in the product observed in labeling experiments with α-d-styrene and D2O2. We envision that these insights will pave the way for the rational design of more efficient catalysts for the industrial production of chemical feedstocks and fine chemicals.

4.
Org Process Res Dev ; 27(2): 262-268, 2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36844035

ABSTRACT

Epoxidation of alkenes is a valuable transformation in the synthesis of fine chemicals. Described herein are the design and development of a continuous flow process for carrying out the epoxidation of alkenes with a homogeneous manganese catalyst at metal loadings as low as 0.05 mol%. In this process, peracetic acid is generated in situ and telescoped directly into the epoxidation reaction, thus reducing the risks associated with its handling and storage, which often limit its use at scale. This flow process lessens the safety hazards associated with both the exothermicity of this epoxidation reaction and the use of the highly reactive peracetic acid. Controlling the speciation of manganese/2-picolinic acid mixtures by varying the ligand:manganese ratio was key to the success of the reaction. This continuous flow process offers an inexpensive, sustainable, and scalable route to epoxides.

5.
J Am Chem Soc ; 139(36): 12495-12503, 2017 09 13.
Article in English | MEDLINE | ID: mdl-28849921

ABSTRACT

Kinetic studies, isotope labeling, and in situ high-resolution mass spectrometry are used to elucidate the mechanism for the catalytic oxidation of styrenes using aqueous hydrogen peroxide (H2O2) and the cationic palladium(II) compound, [(PBO)Pd(NCMe)2][OTf]2 (PBO = 2-(pyridin-2-yl)benzoxazole). Previous studies have shown that this reaction yields acetophenones with high selectivity. We find that H2O2 binds to Pd(II) followed by styrene binding to generate a Pd-alkylperoxide that liberates acetophenone by at least two competitive processes, one of which involves a palladium enolate intermediate that has not been previously observed in olefin oxidation reactions. We suggest that acetophenone is formed from the palladium enolate intermediate by protonation from H2O2. We replaced hydrogen peroxide with t-butyl hydroperoxide and found that, although the palladium enolate intermediate was observed, it was not on the major product-generating pathway, indicating that the form of the oxidant plays a key role in the reaction mechanism.

6.
ChemSusChem ; 10(4): 675-680, 2017 02 22.
Article in English | MEDLINE | ID: mdl-27906507

ABSTRACT

2-Ynamides can be synthesised through PdII catalysed oxidative carbonylation, utilising low catalyst loadings. A variety of alkynes and amines can be used to afford 2-ynamides in high yields, whilst overcoming the drawbacks associated with previous oxidative methods, which rely on dangerous solvents and gas mixtures. The use of [NBu4 ]I allows the utilisation of the industrially recommended solvent ethyl acetate. O2 can be used as the terminal oxidant, and the catalyst can operate under safer conditions with low O2 concentrations.


Subject(s)
Alkynes/chemistry , Amides/chemical synthesis , Palladium/chemistry , Amines/chemistry , Catalysis , Gases , Oxidation-Reduction , Oxygen/chemistry , Solvents
7.
Chemistry ; 22(34): 11982-5, 2016 Aug 16.
Article in English | MEDLINE | ID: mdl-27305489

ABSTRACT

A homogeneous Pd(II) catalyst, utilizing a simple and inexpensive amine ligand (TMEDA), allows 2-alkynoates to be prepared in high yields by an oxidative carbonylation of terminal alkynes and alcohols. The catalyst system overcomes many of the limitations of previous palladium carbonylation catalysts. It has an increased substrate scope, avoids large excesses of alcohol substrate and uses a desirable solvent. The catalyst employs oxygen as the terminal oxidant and can be operated under safer gas mixtures.

8.
Chemistry ; 21(21): 7726-30, 2015 May 18.
Article in English | MEDLINE | ID: mdl-25821187

ABSTRACT

A palladium-catalyzed oxidative reaction is reported which converts dihydropyrans to their corresponding ortholactone. The products are formed in good to excellent yields with a very high level of chemoselectivity and functional group tolerance. Mechanistic studies confirm that the reaction proceeds by a Wacker-type mechanism.

9.
Chem Commun (Camb) ; 50(35): 4524-43, 2014 May 07.
Article in English | MEDLINE | ID: mdl-24667871

ABSTRACT

Selective oxidation reactions are challenging when carried out on an industrial scale. Many traditional methods are undesirable from an environmental or safety point of view. There is a need to develop sustainable catalytic approaches that use molecular oxygen as the terminal oxidant. This review will discuss the use of stable radicals (primarily nitroxyl radicals) in aerobic oxidation catalysis. We will discuss the important advances that have occurred in recent years, highlighting the catalytic performance, mechanistic insights and the expanding synthetic utility of these catalytic systems.

10.
Chem Commun (Camb) ; 49(54): 6030-2, 2013 Jul 11.
Article in English | MEDLINE | ID: mdl-23719631

ABSTRACT

Copper/TEMPO catalysts can be used to prepare nitriles from aldehydes or alcohols using aqueous ammonia. Readily accessible methods were developed that enable standard glassware to be used with air as the source of O2. It was further shown that, at higher temperatures in a pressurised reactor under limiting oxygen conditions (8% O2), catalyst loadings of 1 mol% could be employed.


Subject(s)
Alcohols/chemistry , Aldehydes/chemistry , Ammonia/chemistry , Copper/chemistry , Cyclic N-Oxides/chemistry , Nitriles/chemical synthesis , Air , Catalysis , Nitriles/chemistry , Oxidation-Reduction , Temperature , Water/chemistry
11.
Chem Commun (Camb) ; 46(38): 7238-40, 2010 Oct 14.
Article in English | MEDLINE | ID: mdl-20820503

ABSTRACT

There is a need to develop effective catalytic methods for alcohol oxidation. Pd(II) complexes have shown great promise as catalysts, however a comparatively small number of ligands have been reported so far. Herein we report the use of commercially available anionic N,O-ligands to produce highly active catalysts.


Subject(s)
Alcohols/chemistry , Palladium/chemistry , Anions/chemistry , Catalysis , Ligands , Nitrogen/chemistry , Oxidation-Reduction , Oxygen/chemistry
12.
Dalton Trans ; 39(36): 8501-10, 2010 Sep 28.
Article in English | MEDLINE | ID: mdl-20520868

ABSTRACT

A supported ionic liquid phase (SILP) catalyst prepared from [PrMIM][Ph(2)P(3-C(6)H(4)SO(3))] (PrMIM = 1-propyl-3-methylimidazolium), [Rh(CO)(2)(acac)] (acacH = 2,4-pentanedione) [OctMIM]NTf(2) (OctMIM = 1-n-octyl-3-methylimidazolium, Tf = CF(3)SO(2)) and microporous silica has been used for the continuous flow hydroformylation of 1-octene in the presence of compressed CO(2). Statistical experimental design was used to show that the reaction rate is neither much affected by the film thickness (IL loading) nor by the syngas:substrate ratio. However, a factor-dependent interaction between the syngas:substrate ratio and film thickness on the reaction rate was revealed. Increasing the substrate flow led to increased reaction rates but lower overall yields. One of the most important parameters proved to be the phase behaviour of the mobile phase, which was studied by varying the reaction pressure. At low CO(2) pressures or when N(2) was used instead of CO(2) rates were low because of poor gas diffusion to the catalytic sites in the SILP. Furthermore, leaching of IL and Rh was high because the substrate is liquid and the IL had been designed to dissolve in it. As the CO(2) pressure was increased, the reaction rate increased and the IL and Rh leaching were reduced, because an expanded liquid phase developed. Due to its lower viscosity the expanded liquid allows better transport of gases to the catalyst and is a poorer solvent for the IL and the catalyst because of its reduced polarity. Above 100 bar (close to the transition to a single phase at 106 bar), the rate of reaction dropped again with increasing pressure because the flowing phase becomes a better and better solvent for the alkene, reducing its partitioning into the IL film. Under optimised conditions, the catalyst was shown to be stable over at least 40 h of continuous catalysis with a steady state turnover frequency (TOF, mol product (mol Rh)(-1)) of 500 h(-1) at low Rh leaching (0.2 ppm). The selectivity of the catalyst was not much affected by the variation of process parameters. The linear:branched (l:b) ratios were ca. 3, similar to that obtained using the very same catalyst in conventional organic solvents.

13.
Dalton Trans ; (2): 337-48, 2010 Jan 14.
Article in English | MEDLINE | ID: mdl-20023964

ABSTRACT

Homogeneous catalysts are powerful tools for the synthesis of fine chemicals, pharmaceuticals and materials, however their exploitation on an industrial scale is often held back due to the challenges of separating and recycling the catalyst. This perspective focuses on approaches to multiphase catalysis that have emerged in the last decade, highlighting methods that can address the separation issues and in some cases result in superior catalyst performance and environmental benefits.


Subject(s)
Catalysis , Carbon Dioxide/chemistry , Conservation of Natural Resources , Ionic Liquids/chemistry , Polymers/chemistry , Solvents/chemistry
14.
Dalton Trans ; (47): 5531-8, 2007 Dec 21.
Article in English | MEDLINE | ID: mdl-18043813

ABSTRACT

The hydroformylation of 1-octene under continuous flow conditions is described. The system involves dissolving the catalyst, made in situ from [Rh(acac)(CO)(2)] (acacH=2,4-pentanedione) and [RMIM][TPPMS] (RMIM=1-propyl (Pr), 1-pentyl (Pn) or 1-octyl (O) -3-methyl imidazolium, TPPMS=Ph(2)P(3-C(6)H(4)SO(3))), in a mixture of nonanal and 1-octene and passing the substrate, 1-octene, together with CO and H(2) through the system dissolved in supercritical CO(2) (scCO(2)). [PrMIM][TPPMS] is poorly soluble in the medium so heavy rhodium leaching (as complexes not containing phosphine) occurs in the early part of the reaction. [PnMIM][TPPMS] affords good rates at relatively low catalyst loadings and relatively low overall pressure (125 bar) with rhodium losses <1 ppm, but the catalyst precipitates at higher catalyst loadings, leading to lower reaction rates. [OMIM][TPPMS] is the most soluble ligand and promotes high reaction rates, although preliminary experiments suggested that rhodium leaching was high at 5-10 ppm. Optimisation aimed at balancing flows so that the level within the reactor remained constant involved a reactor set up based around a reactor fitted with a sight glass and sparging stirrer with the CO(2) being fed by a cooled head HPLC pump, 1-octene by a standard HPLC pump and CO/H(2) through a mass flow controller. The pressure was controlled by a back pressure regulator. Using this set up, [OMIM][TPPMS] as the ligand and a total pressure of 140 bar, it was possible to control the level within the reactor and obtain a turnover frequency of ca. 180 h(-1). Rhodium losses in the optimised system were 100 ppb. Transport studies showed that 1-octene is preferentially transported over the aldehydes at all pressures, although the difference in mol fraction in the mobile phase was less at lower pressures. Nonanal in the mobile phase suppresses the extraction of 1-octene to some extent, so it is better to operate at high conversion and low pressure to optimise the extraction of the products relative to the substrate. CO and H(2) in the mobile phase also suppress the extraction efficiency by as much as 80%.

15.
J Phys Chem B ; 111(30): 9001-9, 2007 Aug 02.
Article in English | MEDLINE | ID: mdl-17608519

ABSTRACT

Previously we showed that CO2 could be used to extract organic molecules from ionic liquids without contamination of the ionic liquid. Consequently a number of other groups demonstrated that ionic liquid/CO2 biphasic systems could be used for homogeneously catalyzed reactions. Large differences in the solubility of various gases in ionic liquids present the possibility of using them for gas separations. More recently we and others have shown that the presence of CO2 increases the solubility of other gases that are poorly soluble in the ionic liquid phase. Therefore, a knowledge and understanding of the phase behavior of these ionic liquid/CO2 systems is important. With the aim of finding ionic liquids that improve CO2 solubility and gaining more information to help us understand how to design CO2-philic ionic liquids, we present the low- and high-pressure measurements of CO2 solubility in a range of ionic liquids possessing structures likely to increase the solubility of CO2. We examined the CO2 solubility in a number of ionic liquids with systematic increases in fluorination. We also studied nonfluorinated ionic liquids that have structural features known to improve CO2 solubility in other compounds such as polymers, for example, carbonyl groups and long alkyl chains with branching or ether linkages. Results show that ionic liquids containing increased fluoroalkyl chains on either the cation or anion do improve CO2 solubility when compared to less fluorinated ionic liquids previously studied. It was also found that it was possible to obtain similar, high levels of CO2 solubility in nonfluorous ionic liquids. In agreement with our previous results, we found that the anion frequently plays a key role in determining CO2 solubility in ionic liquids.

16.
Chem Commun (Camb) ; (14): 1462-4, 2007 Apr 14.
Article in English | MEDLINE | ID: mdl-17389993

ABSTRACT

Rapid hydroformylation of 1-octene (rates up to 800 h(-1)) with the catalyst remaining stable for at least 40 h and with very low rhodium leaching levels (0.5 ppm) is demonstrated when using a system involving flowing the substrate, reacting gases and products dissolved in supercritical CO(2) (scCO(2)) over a fixed bed supported ionic liquid phase catalyst.

17.
J Phys Chem B ; 110(18): 9354-61, 2006 May 11.
Article in English | MEDLINE | ID: mdl-16671755

ABSTRACT

Ionic liquids (ILs) have been suggested as potential "green" solvents to replace volatile organic solvents in reaction and separation processes due to their negligible vapor pressure. To develop ILs for these applications, it is important to gain a fundamental understanding of the factors that control the phase behavior of ionic liquids with other liquids. In this work, we continue our study of the effect of chemical and structural factors on the phase behavior of ionic liquids with alcohols, focusing on pyridinium ILs for comparison to imidazolium ILs from our previous studies. The impact of different alcohol and IL characteristics, including alcohol chain length, cation alkyl chain length, anion, different substituent groups on the pyridinium cation, and type of cation (pyridinium vs imidazolium) will be discussed. In general, the same type of behavior is observed for pyridinium and imidazolium ILs, with all systems studied exhibiting upper critical solution temperature behavior. The impacts of alcohol chain length, cation chain length, and anion, are the same for pyridinium ILs as those observed previously for imidazolium ILs. However, the effect of cation type on the phase behavior is dependent on the strength of the cation-anion interaction. Additionally, all systems from this study and our previous work for imidazolium ILs were modeled using the nonrandom two-liquid (NRTL) equation using two different approaches for determining the adjustable parameters. For all systems, the NRTL equation with binary interaction parameters with a linear temperature dependence provided a good fit of the experimental data.

18.
Chem Commun (Camb) ; (17): 1880-1, 2002 Sep 07.
Article in English | MEDLINE | ID: mdl-12271655

ABSTRACT

The temperature dependence of the bimolecular rate constants for a diffusion controlled reaction involving neutral reactants have been directly determined in five commonly used ionic liquids over the temperature range 5-70 degrees C.

SELECTION OF CITATIONS
SEARCH DETAIL
...