Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 24(16)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37628720

ABSTRACT

Cellular respiration is associated with at least six distinct but intertwined biological functions. (1) biosynthesis of ATP from ADP and inorganic phosphate, (2) consumption of respiratory substrates, (3) support of membrane transport, (4) conversion of respiratory energy to heat, (5) removal of oxygen to prevent oxidative damage, and (6) generation of reactive oxygen species (ROS) as signaling molecules. Here we focus on function #6, which helps the organism control its mitochondria. The ROS bursts typically occur when the mitochondrial membrane potential (MMP) becomes too high, e.g., due to mitochondrial malfunction, leading to cardiolipin (CL) oxidation. Depending on the intensity of CL damage, specific programs for the elimination of damaged mitochondria (mitophagy), whole cells (apoptosis), or organisms (phenoptosis) can be activated. In particular, we consider those mechanisms that suppress ROS generation by enabling ATP synthesis at low MMP levels. We discuss evidence that the mild depolarization mechanism of direct ATP/ADP exchange across mammalian inner and outer mitochondrial membranes weakens with age. We review recent data showing that by protecting CL from oxidation, mitochondria-targeted antioxidants decrease lethality in response to many potentially deadly shock insults. Thus, targeting ROS- and CL-dependent pathways may prevent acute mortality and, hopefully, slow aging.


Subject(s)
Mitochondria , Respiration , Animals , Reactive Oxygen Species , Aging , Cardiolipins , Adenosine Triphosphate , Mammals
2.
Biomolecules ; 12(10)2022 09 22.
Article in English | MEDLINE | ID: mdl-36291554

ABSTRACT

The P-loop fold nucleoside triphosphate (NTP) hydrolases (also known as Walker NTPases) function as ATPases, GTPases, and ATP synthases, are often of medical importance, and represent one of the largest and evolutionarily oldest families of enzymes. There is still no consensus on their catalytic mechanism. To clarify this, we performed the first comparative structural analysis of more than 3100 structures of P-loop NTPases that contain bound substrate Mg-NTPs or their analogues. We proceeded on the assumption that structural features common to these P-loop NTPases may be essential for catalysis. Our results are presented in two articles. Here, in the first, we consider the structural elements that stimulate hydrolysis. Upon interaction of P-loop NTPases with their cognate activating partners (RNA/DNA/protein domains), specific stimulatory moieties, usually Arg or Lys residues, are inserted into the catalytic site and initiate the cleavage of gamma phosphate. By analyzing a plethora of structures, we found that the only shared feature was the mechanistic interaction of stimulators with the oxygen atoms of gamma-phosphate group, capable of causing its rotation. One of the oxygen atoms of gamma phosphate coordinates the cofactor Mg ion. The rotation must pull this oxygen atom away from the Mg ion. This rearrangement should affect the properties of the other Mg ligands and may initiate hydrolysis according to the mechanism elaborated in the second article.


Subject(s)
AAA Domain , Nucleoside-Triphosphatase , Nucleoside-Triphosphatase/chemistry , Nucleoside-Triphosphatase/metabolism , Hydrolysis , Nucleosides , Adenosine Triphosphatases/metabolism , GTP Phosphohydrolases/metabolism , Adenosine Triphosphate/metabolism , DNA , RNA , Phosphates/metabolism , AAA Proteins/metabolism , Oxygen/metabolism
3.
Biomolecules ; 12(10)2022 Sep 22.
Article in English | MEDLINE | ID: mdl-36291556

ABSTRACT

To clarify the obscure hydrolysis mechanism of ubiquitous P-loop-fold nucleoside triphosphatases (Walker NTPases), we analysed the structures of 3136 catalytic sites with bound Mg-NTP complexes or their analogues. Our results are presented in two articles; here, in the second of them, we elucidated whether the Walker A and Walker B sequence motifs-common to all P-loop NTPases-could be directly involved in catalysis. We found that the hydrogen bonds (H-bonds) between the strictly conserved, Mg-coordinating Ser/Thr of the Walker A motif ([Ser/Thr]WA) and aspartate of the Walker B motif (AspWB) are particularly short (even as short as 2.4 ångströms) in the structures with bound transition state (TS) analogues. Given that a short H-bond implies parity in the pKa values of the H-bond partners, we suggest that, in response to the interactions of a P-loop NTPase with its cognate activating partner, a proton relocates from [Ser/Thr]WA to AspWB. The resulting anionic [Ser/Thr]WA alkoxide withdraws a proton from the catalytic water molecule, and the nascent hydroxyl attacks the gamma phosphate of NTP. When the gamma-phosphate breaks away, the trapped proton at AspWB passes by the Grotthuss relay via [Ser/Thr]WA to beta-phosphate and compensates for its developing negative charge that is thought to be responsible for the activation barrier of hydrolysis.


Subject(s)
AAA Domain , Nucleoside-Triphosphatase , Nucleoside-Triphosphatase/chemistry , Nucleoside-Triphosphatase/metabolism , Aspartic Acid , Protons , Nucleosides , Catalysis , Water/metabolism , AAA Proteins/metabolism , Phosphates/metabolism
4.
Nanomaterials (Basel) ; 12(3)2022 Jan 23.
Article in English | MEDLINE | ID: mdl-35159706

ABSTRACT

Amphiphilic copolymers consisting of alternating hydrophilic and hydrophobic units account for a major recent methodical breakthrough in the investigations of membrane proteins. Styrene-maleic acid (SMA), diisobutylene-maleic acid (DIBMA), and related copolymers have been shown to extract membrane proteins directly from lipid membranes without the need for classical detergents. Within the particular experimental setup, they form disc-shaped nanoparticles with a narrow size distribution, which serve as a suitable platform for diverse kinds of spectroscopy and other biophysical techniques that require relatively small, homogeneous, water-soluble particles of separate membrane proteins in their native lipid environment. In recent years, copolymer-encased nanolipoparticles have been proven as suitable protein carriers for various structural biology applications, including cryo-electron microscopy (cryo-EM), small-angle scattering, and conventional and single-molecule X-ray diffraction experiments. Here, we review the current understanding of how such nanolipoparticles are formed and organized at the molecular level with an emphasis on their chemical diversity and factors affecting their size and solubilization efficiency.

5.
Int J Mol Sci ; 22(24)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34948277

ABSTRACT

In humans, over-activation of innate immunity in response to viral or bacterial infections often causes severe illness and death. Furthermore, similar mechanisms related to innate immunity can cause pathogenesis and death in sepsis, massive trauma (including surgery and burns), ischemia/reperfusion, some toxic lesions, and viral infections including COVID-19. Based on the reviewed observations, we suggest that such severe outcomes may be manifestations of a controlled suicidal strategy protecting the entire population from the spread of pathogens and from dangerous pathologies rather than an aberrant hyperstimulation of defense responses. We argue that innate immunity may be involved in the implementation of an altruistic programmed death of an organism aimed at increasing the well-being of the whole community. We discuss possible ways to suppress this atavistic program by interfering with innate immunity and suggest that combating this program should be a major goal of future medicine.


Subject(s)
Altruism , Apoptosis/immunology , Immunity, Innate/immunology , Animals , COVID-19/immunology , Cell Death/immunology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/mortality , Humans , Inflammasomes/immunology , Inflammation/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Signal Transduction/immunology
6.
Nat Commun ; 12(1): 5293, 2021 09 06.
Article in English | MEDLINE | ID: mdl-34489448

ABSTRACT

The ATP hydrolysis transition state of motor proteins is a weakly populated protein state that can be stabilized and investigated by replacing ATP with chemical mimics. We present atomic-level structural and dynamic insights on a state created by ADP aluminum fluoride binding to the bacterial DnaB helicase from Helicobacter pylori. We determined the positioning of the metal ion cofactor within the active site using electron paramagnetic resonance, and identified the protein protons coordinating to the phosphate groups of ADP and DNA using proton-detected 31P,1H solid-state nuclear magnetic resonance spectroscopy at fast magic-angle spinning > 100 kHz, as well as temperature-dependent proton chemical-shift values to prove their engagements in hydrogen bonds. 19F and 27Al MAS NMR spectra reveal a highly mobile, fast-rotating aluminum fluoride unit pointing to the capture of a late ATP hydrolysis transition state in which the phosphoryl unit is already detached from the arginine and lysine fingers.


Subject(s)
Adenosine Diphosphate/chemistry , Adenosine Triphosphate/chemistry , Bacterial Proteins/chemistry , DNA, Bacterial/chemistry , DnaB Helicases/chemistry , Helicobacter pylori/enzymology , Adenosine Diphosphate/metabolism , Adenosine Triphosphate/metabolism , Aluminum Compounds/chemistry , Aluminum Compounds/metabolism , Arginine/chemistry , Arginine/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Catalytic Domain , Cloning, Molecular , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , DnaB Helicases/genetics , DnaB Helicases/metabolism , Escherichia coli/enzymology , Escherichia coli/genetics , Fluorides/chemistry , Fluorides/metabolism , Gene Expression , Helicobacter pylori/genetics , Hydrolysis , Lysine/chemistry , Lysine/metabolism , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Substrate Specificity , Thermodynamics
7.
Int J Mol Sci ; 22(5)2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33806280

ABSTRACT

Amphiphilic diisobutylene/maleic acid (DIBMA) copolymers extract lipid-encased membrane proteins from lipid bilayers in a detergent-free manner, yielding nanosized, discoidal DIBMA lipid particles (DIBMALPs). Depending on the DIBMA/lipid ratio, the size of DIBMALPs can be broadly varied which makes them suitable for the incorporation of proteins of different sizes. Here, we examine the influence of the DIBMALP sizes and the presence of protein on the dynamics of encased lipids. As shown by a set of biophysical methods, the stability of DIBMALPs remains unaffected at different DIBMA/lipid ratios. Coarse-grained molecular dynamics simulations confirm the formation of viable DIBMALPs with an overall size of up to 35 nm. Electron paramagnetic resonance spectroscopy of nitroxides located at the 5th, 12th or 16th carbon atom positions in phosphatidylcholine-based spin labels reveals that the dynamics of enclosed lipids are not altered by the DIBMALP size. The presence of the membrane protein sensory rhodopsin II from Natronomonas pharaonis (NpSRII) results in a slight increase in the lipid dynamics compared to empty DIBMALPs. The light-induced photocycle shows full functionality of DIBMALPs-embedded NpSRII and a significant effect of the protein-to-lipid ratio during preparation on the NpSRII dynamics. This study indicates a possible expansion of the applicability of the DIBMALP technology on studies of membrane protein-protein interaction and oligomerization in a constraining environment.


Subject(s)
Halorhodopsins/chemistry , Lipid Bilayers/chemistry , Sensory Rhodopsins/chemistry , Alkenes/chemistry , Biophysical Phenomena , Dimyristoylphosphatidylcholine/chemistry , Electron Spin Resonance Spectroscopy , Halobacteriaceae/chemistry , Halobacteriaceae/radiation effects , Halorhodopsins/radiation effects , Maleates/chemistry , Microscopy, Atomic Force , Microscopy, Electron, Transmission , Molecular Dynamics Simulation , Nanoparticles/chemistry , Nanoparticles/ultrastructure , Particle Size , Photochemical Processes , Sensory Rhodopsins/radiation effects , Spin Labels
8.
J Fungi (Basel) ; 7(2)2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33562593

ABSTRACT

The cell wall sensor Wsc1 belongs to a small family of transmembrane proteins, which are crucial to sustain cell integrity in yeast and other fungi. Wsc1 acts as a mechanosensor of the cell wall integrity (CWI) signal transduction pathway which responds to external stresses. Here we report on the purification of Wsc1 by its trapping in water-soluble polymer-stabilized lipid nanoparticles, obtained with an amphipathic styrene-maleic acid (SMA) copolymer. The latter was employed to transfer tagged sensors from their native yeast membranes into SMA/lipid particles (SMALPs), which allows their purification in a functional state, i.e., avoiding denaturation. The SMALPs composition was characterized by fluorescence correlation spectroscopy, followed by two-dimensional image acquisition from single particle transmission electron microscopy to build a three-dimensional model of the sensor. The latter confirms that Wsc1 consists of a large extracellular domain connected to a smaller intracellular part by a single transmembrane domain, which is embedded within the hydrophobic moiety of the lipid bilayer. The successful extraction of a sensor from the yeast plasma membrane by a detergent-free procedure into a native-like membrane environment provides new prospects for in vitro structural and functional studies of yeast plasma proteins which are likely to be applicable to other fungi, including plant and human pathogens.

9.
Molecules ; 25(22)2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33198135

ABSTRACT

Nucleoside triphosphates (NTPs) are used as chemical energy source in a variety of cell systems. Structural snapshots along the NTP hydrolysis reaction coordinate are typically obtained by adding stable, nonhydrolyzable adenosine triphosphate (ATP) -analogues to the proteins, with the goal to arrest a state that mimics as closely as possible a physiologically relevant state, e.g., the pre-hydrolytic, transition and post-hydrolytic states. We here present the lessons learned on two distinct ATPases on the best use and unexpected pitfalls observed for different analogues. The proteins investigated are the bacterial DnaB helicase from Helicobacter pylori and the multidrug ATP binding cassette (ABC) transporter BmrA from Bacillus subtilis, both belonging to the same division of P-loop fold NTPases. We review the magnetic-resonance strategies which can be of use to probe the binding of the ATP-mimics, and present carbon-13, phosphorus-31, and vanadium-51 solid-state nuclear magnetic resonance (NMR) spectra of the proteins or the bound molecules to unravel conformational and dynamic changes upon binding of the ATP-mimics. Electron paramagnetic resonance (EPR), and in particular W-band electron-electron double resonance (ELDOR)-detected NMR, is of complementary use to assess binding of vanadate. We discuss which analogues best mimic the different hydrolysis states for the DnaB helicase and the ABC transporter BmrA. These might be relevant also to structural and functional studies of other NTPases.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Adenosine Triphosphate/chemistry , Bacillus subtilis/enzymology , DnaB Helicases/metabolism , Helicobacter pylori/enzymology , Adenosine Triphosphatases/metabolism , Adenosine Triphosphate/analogs & derivatives , Adenylyl Imidodiphosphate/chemistry , Aluminum Compounds/chemistry , Bacterial Proteins/metabolism , Electron Spin Resonance Spectroscopy , Electrons , Fluorides/chemistry , Hydrolysis , Magnetic Resonance Spectroscopy , Protein Conformation
10.
Oxid Med Cell Longev ; 2020: 3631272, 2020.
Article in English | MEDLINE | ID: mdl-32104531

ABSTRACT

A new mitochondria-targeted probe MitoCLox was designed as a starting compound for a series of probes sensitive to cardiolipin (CL) peroxidation. Fluorescence microscopy reported selective accumulation of MitoCLox in mitochondria of diverse living cell cultures and its oxidation under stress conditions, particularly those known to cause a selective cardiolipin oxidation. Ratiometric fluorescence measurements using flow cytometry showed a remarkable dependence of the MitoCLox dynamic range on the oxidation of the sample. Specifically, MitoCLox oxidation was induced by low doses of hydrogen peroxide or organic hydroperoxide. The mitochondria-targeted antioxidant 10-(6'-plastoquinonyl)decyltriphenyl-phosphonium (SkQ1), which was shown earlier to selectively protect cardiolipin from oxidation, prevented hydrogen peroxide-induced MitoCLox oxidation in the cells. Concurrent tracing of MitoCLox oxidation and membrane potential changes in response to hydrogen peroxide addition showed that the oxidation of MitoCLox started without a delay and was complete during the first hour, whereas the membrane potential started to decay after 40 minutes of incubation. Hence, MitoCLox could be used for splitting the cell response to oxidative stress into separate steps. Application of MitoCLox revealed heterogeneity of the mitochondrial population; in living endothelial cells, a fraction of small, rounded mitochondria with an increased level of lipid peroxidation were detected near the nucleus. In addition, the MitoCLox staining revealed a specific fraction of cells with an increased level of oxidized lipids also in the culture of human myoblasts. The fraction of such cells increased in high-density cultures. These specific conditions correspond to the initiation of spontaneous myogenesis in vitro, which indicates that oxidation may precede the onset of myogenic differentiation. These data point to a possible participation of oxidized CL in cell signalling and differentiation.


Subject(s)
Lipid Peroxidation/physiology , Microscopy, Fluorescence/methods , Mitochondria/metabolism , Animals , Cardiolipins/metabolism , Humans , Hydrogen Peroxide/metabolism , Lipid Metabolism/drug effects , Muscle Development/drug effects , Oxidation-Reduction/drug effects , Oxidative Stress/drug effects , Plastoquinone/analogs & derivatives , Plastoquinone/pharmacology
11.
Biochim Biophys Acta Biomembr ; 1862(5): 183207, 2020 05 01.
Article in English | MEDLINE | ID: mdl-31987867

ABSTRACT

Amphiphilic maleic acid-containing copolymers account for a recent methodical breakthrough in the study of membrane proteins. Their application enables a detergent-free extraction of membrane proteins from lipid bilayers, yielding stable water-soluble, discoidal lipid bilayer particles with incorporated proteins, which are wrapped with copolymers. Although many studies confirm the potential of this approach for membrane protein research, the interactions between the maleic acid-containing copolymers and extracted lipids, as well as possible effects of the copolymers on lipid-embedded proteins deserve further scrutinization. Here, we combine electron paramagnetic resonance spectroscopy and coarse-grain molecular dynamics simulations to compare the distribution and dynamics of lipids in lipid particles of phospholipid bilayers encased either by an aliphatic diisobutylene/maleic acid copolymer (DIBMALPs) or by an aromatic styrene/maleic acid copolymer (SMALPs). Nitroxides located at the 5th, 12th or 16th carbon atom positions in phosphatidylcholine-based spin labels experience restrictions of their reorientational motion depending on the type of encasing copolymer. The dynamics of the lipids was less constrained in DIBMALPs than in SMALPs with the affinity of spin labeled lipids to the polymeric rim being more pronounced in SMALPs.


Subject(s)
Lipid Bilayers/chemistry , Maleates/chemistry , Nanoparticles/chemistry , Alkenes/chemistry , Dimyristoylphosphatidylcholine/chemistry , Electron Spin Resonance Spectroscopy/methods , Membrane Proteins/chemistry , Molecular Dynamics Simulation , Phosphatidylcholines/chemistry , Phospholipids , Polymers/chemistry , Polystyrenes/chemistry , Spin Labels/chemical synthesis
12.
Oxid Med Cell Longev ; 2019: 9710208, 2019.
Article in English | MEDLINE | ID: mdl-31827716

ABSTRACT

Peroxidation of cardiolipin (CL) in the inner mitochondrial membrane plays a key role in the development of various pathologies and, probably, aging. The four fatty acid tails of CL are usually polyunsaturated, which makes CL particularly sensitive to peroxidation. Peroxidation of CL is involved in the initiation of apoptosis, as well as in some other important cellular signaling chains. However, the studies of CL peroxidation are strongly limited by the lack of methods for its tracing in living cells. We have synthesized a new mitochondria-targeted fluorescent probe sensitive to lipid peroxidation (dubbed MitoCLox), where the BODIPY fluorophore, carrying a diene-containing moiety (as in the C11-BODIPY (581/591) probe), is conjugated with a triphenylphosphonium cation (TPP+) via a long flexible linker that contains two amide bonds. The oxidation of MitoCLox could be measured either as a decrease of absorbance at 588 nm or as an increase of fluorescence in the ratiometric mode at 520/590 nm (emission). In CL-containing liposomes, MitoCLox oxidation was induced by cytochrome c and developed in parallel with cardiolipin oxidation. TPP+-based mitochondria-targeted antioxidant SkQ1, in its reduced form, inhibited oxidation of MitoCLox concurrently with the peroxidation of cardiolipin. Molecular dynamic simulations of MitoCLox in a cardiolipin-containing membrane showed affinity of positively charged MitoCLox to negatively charged CL molecules; the oxidizable diene moiety of MitoCLox resided on the same depth as the cardiolipin lipid peroxides. We suggest that MitoCLox could be used for monitoring CL oxidation in vivo and, owing to its flexible linker, also serve as a platform for producing peroxidation sensors with affinity to particular lipids.


Subject(s)
Cardiolipins/chemistry , Cytochromes c/metabolism , Fluorescent Dyes/chemistry , Lipid Peroxidation , Mitochondria/metabolism , Apoptosis , Cardiolipins/metabolism , Fluorescence , Fluorescent Dyes/metabolism , Humans , Liposomes/metabolism , Oxidation-Reduction , Reactive Oxygen Species/metabolism
13.
Front Aging Neurosci ; 11: 256, 2019.
Article in English | MEDLINE | ID: mdl-31619983

ABSTRACT

Tau is a neuronal microtubule-associated protein (MAP) that is involved in the regulation of axonal microtubule assembly. However, as a protein with intrinsically disordered regions (IDRs), tau also interacts with many other partners in addition to microtubules. Phosphorylation at selected sites modulates tau's various intracellular interactions and regulates the properties of IDRs. In Alzheimer's disease (AD) and other tauopathies, tau exhibits pathologically increased phosphorylation (hyperphosphorylation) at selected sites and aggregates into neurofibrillary tangles (NFTs). By bioinformatics means, we tested the hypothesis that the sequence of tau has changed during the vertebrate evolution in a way that novel interactions developed and also the phosphorylation pattern was affected, which made tau prone to the development of tauopathies. We report that distinct regions of tau show functional specialization in their molecular interactions. We found that tau's amino-terminal region, which is involved in biological processes related to "membrane organization" and "regulation of apoptosis," exhibited a strong evolutionary increase in protein disorder providing the basis for the development of novel interactions. We observed that the predicted phosphorylation sites have changed during evolution in a region-specific manner, and in some cases the overall number of phosphorylation sites increased owing to the formation of clusters of phosphorylatable residues. In contrast, disease-specific hyperphosphorylated sites remained highly conserved. The data indicate that novel, non-microtubule related tau interactions developed during evolution and suggest that the biological processes, which are mediated by these interactions, are of pathological relevance. Furthermore, the data indicate that predicted phosphorylation sites in some regions of tau, including a cluster of phosphorylatable residues in the alternatively spliced exon 2, have changed during evolution. In view of the "antagonistic pleiotropy hypothesis" it may be worth to take disease-associated phosphosites with low evolutionary conservation as relevant biomarkers into consideration.

14.
Biochim Biophys Acta Biomembr ; 1861(12): 183051, 2019 12 01.
Article in English | MEDLINE | ID: mdl-31449800

ABSTRACT

The human genome contains about 700 genes of G protein-coupled receptors (GPCRs) of class A; these seven-helical membrane proteins are the targets of almost half of all known drugs. In the middle of the helix bundle, crystal structures reveal a highly conserved sodium-binding site, which is connected with the extracellular side by a water-filled tunnel. This binding site contains a sodium ion in those GPCRs that are crystallized in their inactive conformations but does not in those GPCRs that are trapped in agonist-bound active conformations. The escape route of the sodium ion upon the inactive-to-active transition and its very direction have until now remained obscure. Here, by modeling the available experimental data, we show that the sodium gradient over the cell membrane increases the sensitivity of GPCRs if their activation is thermodynamically coupled to the sodium ion translocation into the cytoplasm but decreases it if the sodium ion retreats into the extracellular space upon receptor activation. The model quantitatively describes the available data on both activation and suppression of distinct GPCRs by membrane voltage. The model also predicts selective amplification of the signal from (endogenous) agonists if only they, but not their (partial) analogs, induce sodium translocation. Comparative structure and sequence analyses of sodium-binding GPCRs indicate a key role for the conserved leucine residue in the second transmembrane helix (Leu2.46) in coupling sodium translocation to receptor activation. Hence, class A GPCRs appear to harness the energy of the transmembrane sodium potential to increase their sensitivity and selectivity.


Subject(s)
Cell Membrane/metabolism , Receptors, G-Protein-Coupled/metabolism , Receptors, G-Protein-Coupled/physiology , Binding Sites/physiology , Biological Transport, Active/physiology , Humans , Membrane Potentials/physiology , Models, Molecular , Models, Theoretical , Protein Binding/physiology , Sodium/metabolism
15.
Biol Chem ; 400(9): 1163-1179, 2019 08 27.
Article in English | MEDLINE | ID: mdl-31116700

ABSTRACT

The evolution of a highly developed nervous system is mirrored by the ability of individual neurons to develop increased morphological complexity. As microtubules (MTs) are crucially involved in neuronal development, we tested the hypothesis that the evolution of complexity is driven by an increasing capacity of the MT system for regulated molecular interactions as it may be implemented by a higher number of molecular players and a greater ability of the individual molecules to interact. We performed bioinformatics analysis on different classes of components of the vertebrate neuronal MT cytoskeleton. We show that the number of orthologs of tubulin structure proteins, MT-binding proteins and tubulin-sequestering proteins expanded during vertebrate evolution. We observed that protein diversity of MT-binding and tubulin-sequestering proteins increased by alternative splicing. In addition, we found that regions of the MT-binding protein tau and MAP6 displayed a clear increase in disorder extent during evolution. The data provide evidence that vertebrate evolution is paralleled by gene expansions, changes in alternative splicing and evolution of coding sequences of components of the MT system. The results suggest that in particular evolutionary changes in tubulin-structure proteins, MT-binding proteins and tubulin-sequestering proteins were prominent drivers for the development of increased neuronal complexity.


Subject(s)
Biological Evolution , Microtubules/metabolism , Neurons/metabolism , Animals , Vertebrates , tau Proteins/metabolism
16.
Photochem Photobiol ; 95(5): 1195-1204, 2019 09.
Article in English | MEDLINE | ID: mdl-30849183

ABSTRACT

Styrene-maleic acid lipid particles (SMALPs) provide stable water-soluble nanocontainers for lipid-encased membrane proteins. Possible effects of the SMA-stabilized lipid environment on the interaction dynamics between functionally coupled membrane proteins remain to be elucidated. The photoreceptor sensory rhodopsin II, NpSRII and its cognate transducer, NpHtrII, of Natronomonas pharaonis form a transmembrane complex, NpSRII2 /NpHtrII2 that plays a key role in negative phototaxis and provides a unique model system to study the light-induced transfer of a conformational signal between two integral membrane proteins. Photon absorption induces transient structural changes in NpSRII comprising an outward movement of helix F that cause further conformational alterations in NpHtrII. We applied site-directed spin labeling and time-resolved optical and EPR spectroscopy to compare the conformational dynamics of NpSRII2 /NpHtrII2 reconstituted in SMALPs with that of nanolipoprotein particle and liposome preparations. NpSRII and NpSRII2 /NpHtrII2 show similar photocycles in liposomes and nanolipoprotein particles. An accelerated decay of the M photointermediate found for SMALPs can be explained by a high local proton concentration provided by the carboxylic groups of the SMA polymer. Light-induced large-scale conformational changes of NpSRII2 /NpHtrII2 observed in liposomes and nanolipoprotein particles are affected in SMALPs, indicating restrictions of the protein's conformational freedom.


Subject(s)
Lipids/chemistry , Lipoproteins/chemistry , Maleates/chemistry , Nanoparticles/chemistry , Sensory Rhodopsins/chemistry , Styrene/chemistry , Electron Spin Resonance Spectroscopy , Protein Conformation , Spin Labels
17.
Biochim Biophys Acta Bioenerg ; 1860(6): 439-451, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30904457

ABSTRACT

Up to half of the cellular energy gets lost owing to membrane proton leakage. The permeability of lipid bilayers to protons is by several orders of magnitude higher than to other cations, which implies efficient proton-specific passages. The nature of these passages remains obscure. By combining experimental measurements of proton flow across phosphatidylcholine vesicles, steered molecular dynamics (MD) simulations of phosphatidylcholine bilayers and kinetic modelling, we have analyzed whether protons could pass between opposite phospholipid molecules when they sporadically converge. The MD simulations showed that each time, when the phosphorus atoms of the two phosphatidylcholine molecules got closer than 1.6 nm, the eight oxygen atoms of their ester linkages could form a transmembrane 'oxygen passage' along which several water molecules aligned into a water wire. Proton permeability along such water wires would be limited by rearrangement of oxygen atoms, which could explain the experimentally shown independence of the proton permeability of pH, H2O/D2O substitution, and membrane dipole potential. We suggest that protons can cross lipid bilayers by moving along short, self-sustaining water wires supported by oxygen atoms of lipid ester linkages.


Subject(s)
Lipid Bilayers/chemistry , Protons , Water/chemistry , Esters/chemistry , Esters/metabolism , Fibronectins/chemistry , Fibronectins/metabolism , Kinetics , Lipid Bilayers/metabolism , Molecular Dynamics Simulation , Oxygen/chemistry , Oxygen/metabolism , Peptide Fragments/chemistry , Peptide Fragments/metabolism , Permeability , Phosphatidylcholines/chemistry , Phosphatidylcholines/metabolism , Water/metabolism
18.
Langmuir ; 35(10): 3748-3758, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30773011

ABSTRACT

Amphiphilic copolymers composed of styrene and maleic acid (SMA) monomers caused a major methodical breakthrough in the study of membrane proteins. They were found to directly release phospholipids and membrane proteins both from artificial and natural lipid bilayers, yielding stable water-soluble discoidal SMA/lipid particles (SMALPs) of uniform size. Although many empirical studies indicate the great potency of SMALPs for membrane protein research, the mechanisms of their formation remain obscure. It is unknown which factors account for the very assembly of SMALPs and govern their uniform size. We have developed a coarse-grained (CG) molecular model of SMA copolymers based on the MARTINI CG force field and used it to probe the behavior of SMA copolymers with varying composition/charge/concentration in solution as well as their interaction with lipid membranes. First, we found that SMA copolymers tend to aggregate in solution into clusters, which could account for the uniform size of SMALPs. Next, molecular dynamics (MD) simulations showed that periodic SMA copolymers with styrene/maleic acid ratios of 2:1 ([SSM] n) and 3:1 ([SSSM] n) differently interacted with lipid bilayers. While clusters of 2:1 SMA copolymers induced membrane poration, the clusters of 3:1 SMA copolymers extracted lipid patches from the membrane yielding SMALP-like structures. Extraction of lipid patches was also observed when we simulated the behavior of 3:1 copolymers with varying lengths and statistical distribution of styrene and MA units. Analysis of MD simulation trajectories and comparison with experimental data indicate that the formation of SMALPs requires copolymer molecules with a sufficient number of units made of more than two sequential styrene monomers.


Subject(s)
Lipid Bilayers/chemistry , Lipids/chemistry , Maleates/chemistry , Polymers/chemistry , Styrene/chemistry , Particle Size , Surface Properties
19.
Elife ; 72018 12 11.
Article in English | MEDLINE | ID: mdl-30526846

ABSTRACT

The ubiquitous P-loop fold nucleoside triphosphatases (NTPases) are typically activated by an arginine or lysine 'finger'. Some of the apparently ancestral NTPases are, instead, activated by potassium ions. To clarify the activation mechanism, we combined comparative structure analysis with molecular dynamics (MD) simulations of Mg-ATP and Mg-GTP complexes in water and in the presence of potassium, sodium, or ammonium ions. In all analyzed structures of diverse P-loop NTPases, the conserved P-loop motif keeps the triphosphate chain of bound NTPs (or their analogs) in an extended, catalytically prone conformation, similar to that imposed on NTPs in water by potassium or ammonium ions. MD simulations of potassium-dependent GTPase MnmE showed that linking of alpha- and gamma phosphates by the activating potassium ion led to the rotation of the gamma-phosphate group yielding an almost eclipsed, catalytically productive conformation of the triphosphate chain, which could represent the basic mechanism of hydrolysis by P-loop NTPases.


Subject(s)
Bacterial Proteins/metabolism , Catalytic Domain , Cations/metabolism , Molecular Dynamics Simulation , Nucleoside-Triphosphatase/metabolism , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Bacterial Proteins/chemistry , Biocatalysis , Biological Evolution , Cations/chemistry , Guanosine Triphosphate/chemistry , Guanosine Triphosphate/metabolism , Kinetics , Magnesium/chemistry , Magnesium/metabolism , Nucleoside-Triphosphatase/chemistry , Protein Binding , Protein Conformation , Water/chemistry , Water/metabolism
20.
Autophagy ; 14(5): 921-924, 2018.
Article in English | MEDLINE | ID: mdl-29458285

ABSTRACT

Mitochondrial dysfunction plays a crucial role in the macroautophagy/autophagy cascade. In a recently published study Sun et al. described the induction of autophagy by the membranophilic triphenylphosphonium (TPP)-based cation 10-(6'-ubiquinonyl) decyltriphenylphosphonium (MitoQ) in HepG2 cells (Sun C, et al. "MitoQ regulates autophagy by inducing a pseudo-mitochondrial membrane potential [PMMP]", Autophagy 2017, 13:730-738.). Sun et al. suggested that MitoQ adsorbed to the inner mitochondrial membrane with its cationic moiety remaining in the intermembrane space, adding a large number of positive charges and establishing a "pseudo-mitochondrial membrane potential," which blocked the ATP synthase. Here we argue that the suggested mechanism for generation of the "pseudo-mitochondrial membrane potential" is physically implausible and contradicts earlier findings on the electrophoretic displacements of membranophilic cations within and through phospholipid membranes. We provide evidence that TPP-cations dissipated the mitochondrial membrane potential in HepG2 cells and that the induction of autophagy in carcinoma cells by TPP-cations correlated with the uncoupling of oxidative phosphorylation. The mild uncoupling of oxidative phosphorylation by various mitochondria-targeted penetrating cations may contribute to their reported therapeutic effects via inducing both autophagy and mitochondria-selective mitophagy.


Subject(s)
Autophagy , Membrane Potential, Mitochondrial , Mitochondria , Mitochondrial Membranes , Mitophagy
SELECTION OF CITATIONS
SEARCH DETAIL
...