Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
mBio ; 14(3): e0010123, 2023 06 27.
Article in English | MEDLINE | ID: mdl-37097030

ABSTRACT

Infected hosts possess two alternative strategies to protect themselves against the negative impact of virus infections: resistance, used to abrogate virus replication, and disease tolerance, used to avoid tissue damage without controlling viral burden. The principles governing pathogen resistance are well understood, while less is known about those involved in disease tolerance. Here, we studied bluetongue virus (BTV), the cause of bluetongue disease of ruminants, as a model system to investigate the mechanisms of virus-host interactions correlating with disease tolerance. BTV induces clinical disease mainly in sheep, while cattle are considered reservoirs of infection, rarely exhibiting clinical symptoms despite sustained viremia. Using primary cells from multiple donors, we show that BTV consistently reaches higher titers in ovine cells than cells from cattle. The variable replication kinetics of BTV in sheep and cow cells were mostly abolished by abrogating the cell type I interferon (IFN) response. We identified restriction factors blocking BTV replication, but both the sheep and cow orthologues of these antiviral genes possess anti-BTV properties. Importantly, we demonstrate that BTV induces a faster host cell protein synthesis shutoff in primary sheep cells than cow cells, which results in an earlier downregulation of antiviral proteins. Moreover, by using RNA sequencing (RNA-seq), we also show a more pronounced expression of interferon-stimulated genes (ISGs) in BTV-infected cow cells than sheep cells. Our data provide a new perspective on how the type I IFN response in reservoir species can have overall positive effects on both virus and host evolution. IMPORTANCE The host immune response usually aims to inhibit virus replication in order to avoid cell damage and disease. In some cases, however, the infected host avoids the deleterious effects of infection despite high levels of viral replication. This strategy is known as disease tolerance, and it is used by animal reservoirs of some zoonotic viruses. Here, using a virus of ruminants (bluetongue virus [BTV]) as an experimental system, we dissected virus-host interactions in cells collected from species that are susceptible (sheep) or tolerant (cow) to disease. We show that (i) virus modulation of the host antiviral type I interferon (IFN) responses, (ii) viral replication kinetics, and (iii) virus-induced cell damage differ in tolerant and susceptible BTV-infected cells. Understanding the complex virus-host interactions in disease tolerance can allow us to disentangle the critical balance between protective and damaging host immune responses.


Subject(s)
Bluetongue , Interferon Type I , Female , Sheep , Animals , Cattle , Interferon Type I/genetics , Bluetongue/metabolism , Viremia , Antiviral Agents
2.
Viruses ; 14(8)2022 07 28.
Article in English | MEDLINE | ID: mdl-36016278

ABSTRACT

Natural hepatitis C virus (HCV) infection is restricted to humans, whereas other primates such as rhesus macaques are non-permissive for infection. To identify human and rhesus macaque genes that differ or share the ability to inhibit HCV replication, we conducted a medium-throughput screen of lentivirus-expressed host genes that disrupt replication of HCV subgenomic replicon RNA expressing secreted Gaussia luciferase. A combined total of >800 interferon-stimulated genes (ISGs) were screened. Our findings confirmed established anti-HCV ISGs, such as IRF1, PKR and DDX60. Novel species−specific inhibitors were also identified and independently validated. Using a cell-based system that recapitulates productive HCV infection, we identified that over-expression of the 'Rho Guanine Nucleotide Exchange Factor 3' gene (ARHGEF3) from both species inhibits full-length virus replication. Additionally, replication of two mosquito-borne flaviviruses, yellow fever virus (YFV) and Zika virus (ZIKV), were also reduced in cell lines over-expressing ARHGEF3 compared to controls. In conclusion, we ascribe novel antiviral activity to the cellular gene ARHGEF3 that inhibits replication of HCV and other important human viral pathogens belonging to the Flaviviridae, and which is conserved between humans and rhesus macaques.


Subject(s)
Hepatitis C , Zika Virus Infection , Zika Virus , Animals , Antiviral Agents/pharmacology , Hepacivirus/genetics , Hepatitis C/drug therapy , Humans , Interferons/pharmacology , Macaca mulatta , Rho Guanine Nucleotide Exchange Factors , Virus Replication , Zika Virus Infection/drug therapy
3.
Virology ; 509: 121-130, 2017 09.
Article in English | MEDLINE | ID: mdl-28628828

ABSTRACT

Orthobunyaviruses include several recently emerging viruses of significant medical and veterinary importance. There is currently very limited understanding on what determines the host species range of these pathogens. In this study we discovered that BST-2/tetherin restricts orthobunyavirus replication in a host-specific manner. We show that viruses with human tropism (Oropouche virus and La Crosse virus) are restricted by sheep BST-2 but not by the human orthologue, while viruses with ruminant tropism (Schmallenberg virus and others) are restricted by human BST-2 but not by the sheep orthologue. We also show that BST-2 blocks orthobunyaviruses replication by reducing the amount of envelope glycoprotein into viral particles egressing from infected cells. This is the first study identifying a restriction factor that correlates with species susceptibility to orthobunyavirus infection. This work provides insight to help us dissect the adaptive changes that bunyaviruses require to cross the species barrier and emerge into new species.


Subject(s)
Antigens, CD/metabolism , Antigens, Differentiation, B-Lymphocyte/metabolism , Host Specificity , Host-Pathogen Interactions , Orthobunyavirus/immunology , Orthobunyavirus/physiology , Viral Envelope Proteins/antagonists & inhibitors , Animals , Cell Line , GPI-Linked Proteins/metabolism , Humans , Sheep , Virus Release
4.
Biol Reprod ; 92(4): 102, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25788664

ABSTRACT

Growing evidence suggests important roles for specialized platelet-derived growth factor receptor alpha-positive (PDGFRalpha(+)) cells in regulating the behaviors of visceral smooth muscle organs. Examination of the female reproductive tracts of mice and monkeys showed that PDGFRalpha(+) cells form extensive networks in ovary, oviduct, and uterus. PDGFRalpha(+) cells were located in discrete locations within these organs, and their distribution and density were similar in rodents and primates. PDGFRalpha(+) cells were distinct from smooth muscle cells and interstitial cells of Cajal (ICC). This was demonstrated with immunohistochemical techniques and by performing molecular expression studies on PDGFRalpha(+) cells from mice with enhanced green fluorescent protein driven off of the endogenous promoter for Pdgfralpha. Significant differences in gene expression were found in PDGFRalpha(+) cells from ovary, oviduct, and uterus. Differences in gene expression were also detected in cells from different tissue regions within the same organ (e.g., uterine myometrium vs. endometrium). PDGFRalpha(+) cells are unlikely to provide pacemaker activity because they lack significant expression of key pacemaker genes found in ICC (Kit and Ano1). Gja1 encoding connexin 43 was expressed at relatively high levels in PDGFRalpha(+) cells (except in the ovary), suggesting these cells can form gap junctions to one another and neighboring smooth muscle cells. PDGFRalpha(+) cells also expressed the early response transcription factor and proto-oncogene Fos, particularly in the ovary. These data demonstrate extensive distribution of PDGFRalpha(+) cells throughout the female reproductive tract. These cells are a heterogeneous population of cells that are likely to contribute to different aspects of physiological regulation in the various anatomical niches they occupy.


Subject(s)
Genitalia, Female/cytology , Animals , Connexin 43/biosynthesis , Connexin 43/genetics , Estrous Cycle , Female , Green Fluorescent Proteins , Interstitial Cells of Cajal , Macaca fascicularis , Mice , Mice, Inbred C57BL , Promoter Regions, Genetic/genetics , Receptor, Platelet-Derived Growth Factor alpha/genetics , Receptor, Platelet-Derived Growth Factor alpha/metabolism , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...