Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(6): 106923, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37283810

ABSTRACT

While insulin resistance (IR) is associated with inflammation in white adipose tissue, we report a non-inflammatory adipose mechanism of high fat-induced IR mediated by loss of Pref-1. Pref-1, released from adipose Pref-1+ cells with characteristics of M2 macrophages, endothelial cells or progenitors, inhibits MIF release from both Pref-1+ cells and adipocytes by binding with integrin ß1 and inhibiting the mobilization of p115. High palmitic acid induces PAR2 expression in Pref-1+ cells, downregulating Pref-1 expression and release in an AMPK-dependent manner. The loss of Pref-1 increases adipose MIF secretion contributing to non-inflammatory IR in obesity. Treatment with Pref-1 blunts the increase in circulating plasma MIF levels and subsequent IR induced by a high palmitic acid diet. Thus, high levels of fatty acids suppress Pref-1 expression and secretion, through increased activation of PAR2, resulting in an increase in MIF secretion and a non-inflammatory adipose mechanism of IR.

2.
Life Sci ; 324: 121712, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37100378

ABSTRACT

AIMS: Cadmium exposure is a worldwide problem that has been linked to the development of cardiovascular disease. This study aimed to elucidate mechanistic details of chronic cadmium exposure on the structure and function of the heart. MAIN METHODS: Male and female mice were exposed to cadmium chloride (CdCl2) via drinking water for eight weeks. Serial echocardiography and blood pressure measurements were performed. Markers of hypertrophy and fibrosis were assessed, along with molecular targets of Ca2+-handling. KEY FINDINGS: Males exhibited a significant reduction in left ventricular ejection fraction and fractional shortening with CdCl2 exposure, along with increased ventricular volume at end-systole, and decreased interventricular septal thickness at end-systole. Interestingly, no changes were detected in females. Experiments in isolated cardiomyocytes revealed that CdCl2-induced contractile dysfunction was also present at the cellular level, showing decreased Ca2+ transient and sarcomere shortening amplitude with CdCl2 exposure. Further mechanistic investigation uncovered a decrease in sarco/endoplasmic reticulum Ca2+-ATPase 2a (SERCA2a) protein expression and phosphorylated phospholamban levels in male hearts with CdCl2 exposure. SIGNIFICANCE: The findings of our novel study provide important insight into how cadmium exposure may act as a sex-specific driver of cardiovascular disease, and further underscore the importance of reducing human exposure to cadmium.


Subject(s)
Cardiovascular Diseases , Ventricular Function, Left , Humans , Mice , Male , Female , Animals , Cadmium/toxicity , Cadmium/metabolism , Stroke Volume , Cardiovascular Diseases/metabolism , Myocytes, Cardiac/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism , Calcium/metabolism
3.
JCI Insight ; 7(8)2022 04 22.
Article in English | MEDLINE | ID: mdl-35451373

ABSTRACT

Metabolic stress is an important cause of pathological atrial remodeling and atrial fibrillation. AMPK is a ubiquitous master metabolic regulator, yet its biological function in the atria is poorly understood in both health and disease. We investigated the impact of atrium-selective cardiac AMPK deletion on electrophysiological and structural remodeling in mice. Loss of atrial AMPK expression caused atrial changes in electrophysiological properties and atrial ectopic activity prior to the onset of spontaneous atrial fibrillation. Concomitant transcriptional downregulation of connexins and atrial ion channel subunits manifested with delayed left atrial activation and repolarization. The early molecular and electrophysiological abnormalities preceded left atrial structural remodeling and interstitial fibrosis. AMPK inactivation induced downregulation of transcription factors (Mef2c and Pitx2c) linked to connexin and ion channel transcriptional reprogramming. Thus, AMPK plays an essential homeostatic role in atria, protecting against adverse remodeling potentially by regulating key transcription factors that control the expression of atrial ion channels and gap junction proteins.


Subject(s)
Atrial Fibrillation , Atrial Remodeling , AMP-Activated Protein Kinases/metabolism , Animals , Atrial Fibrillation/metabolism , Connexins/genetics , Connexins/metabolism , Ion Channels/genetics , Ion Channels/metabolism , Mice , Myocytes, Cardiac/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
6.
Proc Natl Acad Sci U S A ; 116(20): 10156-10161, 2019 05 14.
Article in English | MEDLINE | ID: mdl-31028142

ABSTRACT

Transient receptor potential canonical type 6 (TRPC6) is a nonselective receptor-operated cation channel that regulates reactive fibrosis and growth signaling. Increased TRPC6 activity from enhanced gene expression or gain-of-function mutations contribute to cardiac and/or renal disease. Despite evidence supporting a pathophysiological role, no orally bioavailable selective TRPC6 inhibitor has yet been developed and tested in vivo in disease models. Here, we report an orally bioavailable TRPC6 antagonist (BI 749327; IC50 13 nM against mouse TRPC6, t1/2 8.5-13.5 hours) with 85- and 42-fold selectivity over the most closely related channels, TRPC3 and TRPC7. TRPC6 calcium conductance results in the stimulation of nuclear factor of activated T cells (NFAT) that triggers pathological cardiac and renal fibrosis and disease. BI 749327 suppresses NFAT activation in HEK293T cells expressing wild-type or gain-of-function TRPC6 mutants (P112Q, M132T, R175Q, R895C, and R895L) and blocks associated signaling and expression of prohypertrophic genes in isolated myocytes. In vivo, BI 749327 (30 mg/kg/day, yielding unbound trough plasma concentration ∼180 nM) improves left heart function, reduces volume/mass ratio, and blunts expression of profibrotic genes and interstitial fibrosis in mice subjected to sustained pressure overload. Additionally, BI 749327 dose dependently reduces renal fibrosis and associated gene expression in mice with unilateral ureteral obstruction. These results provide in vivo evidence of therapeutic efficacy for a selective pharmacological TRPC6 inhibitor with oral bioavailability and suitable pharmacokinetics to ameliorate cardiac and renal stress-induced disease with fibrosis.


Subject(s)
Cardiomegaly/drug therapy , Nephrosclerosis/drug therapy , TRPC6 Cation Channel/antagonists & inhibitors , Animals , Drug Evaluation, Preclinical , Fibrosis , HEK293 Cells , Heart/drug effects , Humans , Kidney/drug effects , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...