Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 372
Filter
1.
PLOS Glob Public Health ; 4(8): e0003414, 2024.
Article in English | MEDLINE | ID: mdl-39116052

ABSTRACT

Extrapulmonary Tuberculosis (EPTB) poses challenges from patient and health system perspectives. The cost-effectiveness analysis of the Xpert MTB/RIF (Xpert) test to diagnose pulmonary tuberculosis is documented. However, there are no economic evaluations for EPTB. Considering the reported better diagnostic sensitivity of the MPT64 test, this study explored its cost-effectiveness as an alternative diagnostic test. We conducted this economic evaluation to assess the cost-effectiveness of the MPT64 test compared to Xpert and ZN microscopy for EPTB adult patients. We utilised a Markov modelling approach to capture short- and long-term costs and benefits from a health system perspective. For the model inputs, we combined data from our cohort studies in Tanzania and peer-reviewed EPTB literature. We calculated the Incremental Cost Effectiveness Ratio (ICER) by comparing the cost (in USD) of each diagnostic test and Quality Adjusted Life Years (QALYs) as health gain. We found the MPT64 test cost-effective for EPTB diagnosis and absolutely dominated ZN microscopy and Xpert using the baseline model inputs. A scenario analysis showed that the Xpert test might be the most cost-effective at its higher test sensitivity, which corresponds to using it to diagnose lymph node aspirates. The prevalence of HIV among EPTB cases, their probability of treatment, costs of ART, and the probability of the MPT64 test in detecting EPTB patients were the main parameters associated with the highest impact on ICER in one-way deterministic analysis. The most cost-effective option for EPTB at the baseline parameters was the MPT64 diagnostic test. Including the MPT64 test in EPTB diagnostic pathways for previously untreated patients can lead to better resource use. The Xpert test was the most cost-effective diagnostic intervention at a higher diagnostic test sensitivity in scenario analyses based on different sites of infection, such as for the lymph node aspirates.

2.
J Clin Pharmacol ; 2024 Aug 09.
Article in English | MEDLINE | ID: mdl-39120865

ABSTRACT

Dexamethasone is a synthetic glucocorticoid approved for treating disorders of various organ systems in both adult and pediatric populations. Currently, approved pediatric dosing recommendations are weight-based, but it is unknown whether differences in dexamethasone drug disposition and exposure exist for children with obesity. This study aimed to develop a population pharmacokinetic (PopPK) model for dexamethasone with data collected from children with obesity. Dexamethasone was given as either IV or oral/enteral administration, and a salt factor correction was used for dexamethasone sodium phosphate injection. A PopPK analysis using dexamethasone plasma concentration versus time was performed using the software NONMEM. A virtual population of 1000 children with obesity across three age groups was generated for dosing simulations. Data from 59 study participants with 82 PK plasma samples were used in the PopPK analysis. A one-compartment model with first-order absorption and the inclusion of total body weight as a covariate characterized the data. No other covariates were included in the PopPK model. Single and multiple IV dose(s) of 0.5 and 1 mg/kg every 8 h resulted in 68% or more of virtual children with obesity attaining simulated exposures that were within exposure ranges previously reported in adult studies. In conclusion, this was the first study to characterize dexamethasone's PopPK in children with obesity. Simulation results suggest that virtual children with obesity receiving oral doses of 0.5 and 1 mg/kg had generally comparable dexamethasone exposures as adult estimates. Additional studies are needed to characterize the dexamethasone's target exposure in children.

3.
Nat Commun ; 15(1): 6587, 2024 Aug 03.
Article in English | MEDLINE | ID: mdl-39097623

ABSTRACT

Metabolic reprogramming, a hallmark of tumorigenesis, involves alterations in glucose and fatty acid metabolism. Here, we investigate the role of Carnitine palmitoyl transferase 1a (Cpt1a), a key enzyme in long-chain fatty acid (LCFA) oxidation, in ErbB2-driven breast cancers. In ErbB2+ breast cancer models, ablation of Cpt1a delays tumor onset, growth, and metastasis. However, Cpt1a-deficient cells exhibit increased glucose dependency that enables survival and eventual tumor progression. Consequently, these cells exhibit heightened oxidative stress and upregulated nuclear factor erythroid 2-related factor 2 (Nrf2) activity. Inhibiting Nrf2 or silencing its expression reduces proliferation and glucose consumption in Cpt1a-deficient cells. Combining the ketogenic diet, composed of LCFAs, or an anti-ErbB2 monoclonal antibody (mAb) with Cpt1a deficiency significantly perturbs tumor growth, enhances apoptosis, and reduces lung metastasis. Using an immunocompetent model, we show that Cpt1a inhibition promotes an antitumor immune microenvironment, thereby enhancing the efficacy of anti-ErbB2 mAbs. Our findings underscore the importance of targeting fatty acid oxidation alongside HER2-targeted therapies to combat resistance in HER2+ breast cancer patients.


Subject(s)
Breast Neoplasms , Carnitine O-Palmitoyltransferase , Fatty Acids , NF-E2-Related Factor 2 , Oxidation-Reduction , Receptor, ErbB-2 , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , Receptor, ErbB-2/antagonists & inhibitors , Fatty Acids/metabolism , Carnitine O-Palmitoyltransferase/metabolism , Carnitine O-Palmitoyltransferase/genetics , Animals , Female , Humans , Mice , Cell Line, Tumor , Breast Neoplasms/pathology , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Oxidative Stress , Tumor Microenvironment/drug effects , Diet, Ketogenic , Cell Proliferation/drug effects , Apoptosis/drug effects , Glucose/metabolism , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/secondary , Lung Neoplasms/genetics , Lung Neoplasms/pathology
4.
Arterioscler Thromb Vasc Biol ; 44(9): 1944-1959, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38989578

ABSTRACT

BACKGROUND: Mitral valve (MV) disease including myxomatous degeneration is the most common form of valvular heart disease with an age-dependent frequency. Genetic evidence indicates that mutations of the human transcription factor FOXC1 are associated with MV defects, including MV regurgitation. In this study, we sought to determine whether murine Foxc1 and its closely related factor, Foxc2, are required in valvular endothelial cells (VECs) for the maintenance of MV leaflets, including VEC junctions and the stratified trilaminar ECM (extracellular matrix). METHODS: Adult mice carrying tamoxifen-inducible, vascular endothelial cell (EC), and lymphatic EC-specific, compound Foxc1;Foxc2 mutations (ie, EC-Foxc-DKO and lymphatic EC-Foxc-DKO mice, respectively) were used to study the function of Foxc1 and Foxc2 in the maintenance of MVs. The EC and lymphatic EC mutations of Foxc1/c2 were induced at 7 to 8 weeks of age by tamoxifen treatment, and abnormalities in the MVs of these mutant mice were assessed via whole-mount immunostaining, immunohistochemistry/RNAscope, Movat pentachrome/Masson Trichrome staining, and Evans blue injection. RESULTS: EC deletions of Foxc1 and Foxc2 in mice resulted in abnormally extended and thicker MVs by causing defects in the regulation of ECM organization with increased proteoglycan and decreased collagen. Notably, reticular adherens junctions were found in VECs of control MV leaflets, and these reticular structures were severely disrupted in EC-Foxc-DKO mice. PROX1 (prospero homeobox protein 1), a key regulator in a subset of VECs on the fibrosa side of MVs, was downregulated in EC-Foxc1/c2 mutant VECs. Furthermore, we determined the precise location of lymphatic vessels in murine MVs, and these lymphatic vessels were aberrantly expanded and dysfunctional in EC-Foxc1/c2 mutant MVs. Lymphatic EC deletion of Foxc1/c2 also resulted in similar structural/ECM abnormalities as seen in EC-Foxc1/c2 mutant MVs. CONCLUSIONS: Our results indicate that Foxc1 and Foxc2 are required for maintaining the integrity of the MV, including VEC junctions, ECM organization, and lymphatic vessel formation/function to prevent myxomatous MV degeneration.


Subject(s)
Disease Models, Animal , Endothelial Cells , Forkhead Transcription Factors , Lymphangiogenesis , Lymphatic Vessels , Mice, Knockout , Animals , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Endothelial Cells/metabolism , Endothelial Cells/pathology , Lymphatic Vessels/metabolism , Lymphatic Vessels/pathology , Mitral Valve/metabolism , Mitral Valve/pathology , Mutation , Mice , Intercellular Junctions/metabolism , Intercellular Junctions/pathology , Heart Valve Diseases/metabolism , Heart Valve Diseases/pathology , Heart Valve Diseases/genetics , Phenotype , Mice, Inbred C57BL , Mitral Valve Prolapse/metabolism , Mitral Valve Prolapse/genetics , Mitral Valve Prolapse/pathology , Extracellular Matrix/metabolism , Extracellular Matrix/pathology
5.
Open Forum Infect Dis ; 11(7): ofae353, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38979014

ABSTRACT

Background: Valganciclovir is the only approved antiviral for cytomegalovirus (CMV) prevention in pediatric solid organ transplantation (SOT). Additional approaches may be needed to improve outcomes. Methods: A multicenter retrospective study from 2016 to 2019 was conducted of pediatric SOT recipients in whom at least 3 months of valganciclovir prophylaxis was planned. Episodes of CMV DNA in blood (DNAemia), CMV disease, drug-related toxicities, as well as other infections in the first year posttransplant and demographic and clinical data were collected. CMV DNAemia in the first year after prophylaxis or during prophylaxis (breakthrough) was analyzed by multivariate hazard models. Results: Among the 749 patients enrolled, 131 (17.5%) had CMV DNAemia at any time in the first year; 85 (11.4%) had breakthrough DNAemia, and 46 (6.1%) had DNAemia after prophylaxis. CMV disease occurred in 30 (4%). In a multivariate model, liver transplantation compared to kidney or heart, intermediate or high risk based on donor/recipient serologies, neutropenia, and valganciclovir dose modifications attributed to toxicity were associated with increased risk of total and/or breakthrough DNAemia. Bacteremia was also associated with increased hazard ratio for CMV DNAemia. In a separate multivariate analysis, rejection occurred more often in those with breakthrough CMV DNAemia (P = .002); liver transplants, specifically, had increased rejection if CMV DNAemia occurred in the first year (P = .004). These associations may be bidirectional as rejection may contribute to infection risk. Conclusions: CMV DNAemia in the first year posttransplantation occurs despite valganciclovir prophylaxis and is associated with medication toxicity, bacteremia, and rejection. Pediatric studies of newer antivirals, especially in higher-risk subpopulations, appear to be warranted.

6.
JAMA Netw Open ; 7(6): e2414122, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38857050

ABSTRACT

Importance: Neurological manifestations during acute SARS-CoV-2-related multisystem inflammatory syndrome in children (MIS-C) are common in hospitalized patients younger than 18 years and may increase risk of new neurocognitive or functional morbidity. Objective: To assess the association of severe neurological manifestations during a SARS-CoV-2-related hospital admission with new neurocognitive or functional morbidities at discharge. Design, Setting, and Participants: This prospective cohort study from 46 centers in 10 countries included patients younger than 18 years who were hospitalized for acute SARS-CoV-2 or MIS-C between January 2, 2020, and July 31, 2021. Exposure: Severe neurological manifestations, which included acute encephalopathy, seizures or status epilepticus, meningitis or encephalitis, sympathetic storming or dysautonomia, cardiac arrest, coma, delirium, and stroke. Main Outcomes and Measures: The primary outcome was new neurocognitive (based on the Pediatric Cerebral Performance Category scale) and/or functional (based on the Functional Status Scale) morbidity at hospital discharge. Multivariable logistic regression analyses were performed to examine the association of severe neurological manifestations with new morbidity in each SARS-CoV-2-related condition. Results: Overall, 3568 patients younger than 18 years (median age, 8 years [IQR, 1-14 years]; 54.3% male) were included in this study. Most (2980 [83.5%]) had acute SARS-CoV-2; the remainder (588 [16.5%]) had MIS-C. Among the patients with acute SARS-CoV-2, 536 (18.0%) had a severe neurological manifestation during hospitalization, as did 146 patients with MIS-C (24.8%). Among survivors with acute SARS-CoV-2, those with severe neurological manifestations were more likely to have new neurocognitive or functional morbidity at hospital discharge compared with those without severe neurological manifestations (27.7% [n = 142] vs 14.6% [n = 356]; P < .001). For survivors with MIS-C, 28.0% (n = 39) with severe neurological manifestations had new neurocognitive and/or functional morbidity at hospital discharge compared with 15.5% (n = 68) of those without severe neurological manifestations (P = .002). When adjusting for risk factors in those with severe neurological manifestations, both patients with acute SARS-CoV-2 (odds ratio, 1.85 [95% CI, 1.27-2.70]; P = .001) and those with MIS-C (odds ratio, 2.18 [95% CI, 1.22-3.89]; P = .009) had higher odds of having new neurocognitive and/or functional morbidity at hospital discharge. Conclusions and Relevance: The results of this study suggest that children and adolescents with acute SARS-CoV-2 or MIS-C and severe neurological manifestations may be at high risk for long-term impairment and may benefit from screening and early intervention to assist recovery.


Subject(s)
COVID-19 , Hospitalization , Nervous System Diseases , SARS-CoV-2 , Systemic Inflammatory Response Syndrome , Humans , COVID-19/complications , COVID-19/epidemiology , Child , Female , Male , Child, Preschool , Hospitalization/statistics & numerical data , Adolescent , Prospective Studies , Systemic Inflammatory Response Syndrome/epidemiology , Nervous System Diseases/etiology , Nervous System Diseases/epidemiology , Infant , Severity of Illness Index
7.
Breast Cancer Res ; 26(1): 86, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807216

ABSTRACT

Copy number gains in genes coding for Rho activating exchange factors as well as losses affecting genes coding for RhoGAP proteins are common in breast cancer (BC), suggesting that elevated Rho signaling may play an important role. Extra copies and overexpression of RHOC also occur, although a role for RhoC overexpression in driving tumor formation has not been assessed in vivo. To this end, we report on the development of a Rosa26 (R26)-targeted Cre-conditional RhoC overexpression mouse (R26RhoC). This mouse was crossed to two models for ERBB2/NEU+ breast cancer: one based on expression of an oncogenic ErbB2/Neu cDNA downstream of the endogenous ErbB2 promoter (FloxNeoNeuNT), the other, a metastatic model that is based on high-level expression from MMTV regulatory elements (NIC). RhoC overexpression dramatically enhanced mammary tumor formation in FloxNeoNeuNT mice but showed a more subtle effect in the NIC line, which forms multiple mammary tumors after a very short latency. RhoC overexpression also enhanced mammary tumor formation in an activated Pik3ca model for breast cancer (Pik3caH1047R). The transforming effect of RhoC was associated with epithelial/mesenchymal transition (EMT) in ErbB2/NeuNT and Pik3caH1047R systems. Thus, our study reveals the importance of elevated wildtype Rho protein expression as a driver of breast tumor formation and highlights the significance of Copy Number Abberations that affect Rho signalling.


Subject(s)
Breast Neoplasms , Class I Phosphatidylinositol 3-Kinases , Gene Expression Regulation, Neoplastic , Phosphatidylinositol 3-Kinases , Receptor, ErbB-2 , rhoC GTP-Binding Protein , Animals , Female , Humans , Mice , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Class I Phosphatidylinositol 3-Kinases/genetics , Class I Phosphatidylinositol 3-Kinases/metabolism , Epithelial-Mesenchymal Transition/genetics , Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/pathology , Mice, Transgenic , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/genetics , Receptor, ErbB-2/metabolism , Receptor, ErbB-2/genetics , rhoC GTP-Binding Protein/metabolism , rhoC GTP-Binding Protein/genetics , Signal Transduction
8.
Clin Pharmacokinet ; 63(6): 885-899, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38814425

ABSTRACT

BACKGROUND: Levetiracetam is an antiseizure medication used for several seizure types in adults and children aged 1 month and older; however, due to a lack of data, pharmacokinetic (PK) variability of levetiracetam is not adequately characterized in certain populations, particularly neonates, children younger than 2 years of age, and children older than 2 years of age with obesity. OBJECTIVE: This study aimed to address the gap by leveraging PK data from two prospective standard-of-care pediatric trials (n = 88) covering an age range from 1 month to 19 years, including those with obesity (64%), and applying a physiologically based PK (PBPK) modeling framework. METHODS: A published PBPK model of levetiracetam for children aged 2 years and older was extended to pediatric patients younger than 2 years of age and patients older than 2 years of age with obesity by accounting for the obesity and age-related changes in PK using PK-Sim® software. The prospective pediatric data, along with the literature data for neonates and children younger than 2 years of age, were used to evaluate the extended PBPK models. RESULTS: Overall, 82.4% of data fell within the 90% interval of model-predicted concentrations, with an average fold error within twofold of the accepted criteria. PBPK modeling revealed that children with obesity had lower weight-normalized clearances (0.053 L/h/kg) on average than children without obesity (0.063 L/h/kg). The effect of maturation was well-characterized, resulting in comparable PBPK-simulated, weight-normalized clearances for neonates and children younger than 2 years of age reported from the literature. CONCLUSIONS: PBPK modeling simulations revealed that the current US FDA-labeled pediatric dosing regimen listed in the prescribing information can produce the required exposure of levetiracetam in these target populations with dose adjustments for children with obesity aged 4 years to younger than 16 years.


Subject(s)
Anticonvulsants , Levetiracetam , Models, Biological , Humans , Levetiracetam/pharmacokinetics , Levetiracetam/administration & dosage , Child, Preschool , Child , Infant , Adolescent , Anticonvulsants/pharmacokinetics , Anticonvulsants/administration & dosage , Male , Female , Age Factors , Infant, Newborn , Young Adult , Obesity/metabolism , Prospective Studies , Computer Simulation
9.
J Clin Invest ; 134(13)2024 May 09.
Article in English | MEDLINE | ID: mdl-38722697

ABSTRACT

Newborn mammalian cardiomyocytes quickly transition from a fetal to an adult phenotype that utilizes mitochondrial oxidative phosphorylation but loses mitotic capacity. We tested whether forced reversal of adult cardiomyocytes back to a fetal glycolytic phenotype would restore proliferative capacity. We deleted Uqcrfs1 (mitochondrial Rieske iron-sulfur protein, RISP) in hearts of adult mice. As RISP protein decreased, heart mitochondrial function declined, and glucose utilization increased. Simultaneously, the hearts underwent hyperplastic remodeling during which cardiomyocyte number doubled without cellular hypertrophy. Cellular energy supply was preserved, AMPK activation was absent, and mTOR activation was evident. In ischemic hearts with RISP deletion, new cardiomyocytes migrated into the infarcted region, suggesting the potential for therapeutic cardiac regeneration. RNA sequencing revealed upregulation of genes associated with cardiac development and proliferation. Metabolomic analysis revealed a decrease in α-ketoglutarate (required for TET-mediated demethylation) and an increase in S-adenosylmethionine (required for methyltransferase activity). Analysis revealed an increase in methylated CpGs near gene transcriptional start sites. Genes that were both differentially expressed and differentially methylated were linked to upregulated cardiac developmental pathways. We conclude that decreased mitochondrial function and increased glucose utilization can restore mitotic capacity in adult cardiomyocytes, resulting in the generation of new heart cells, potentially through the modification of substrates that regulate epigenetic modification of genes required for proliferation.


Subject(s)
Cell Proliferation , Mitochondria, Heart , Myocytes, Cardiac , Animals , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Mice , Mitochondria, Heart/metabolism , Mitochondria, Heart/genetics , Mitochondria, Heart/pathology , Mice, Knockout , Electron Transport Complex III/metabolism , Electron Transport Complex III/genetics , Glucose/metabolism
10.
Pediatr Transplant ; 28(3): e14750, 2024 May.
Article in English | MEDLINE | ID: mdl-38623880

ABSTRACT

BACKGROUND: Pediatric allogeneic hematopoietic cell transplant (allo-HCT) recipients are at risk for morbidity and mortality from human adenovirus (HAdV). HAdV can be detected in an asymptomatic state, referred to as infection or with signs or symptoms of illness, referred to as disease. Standardized case definitions are needed to distinguish infection from disease and allow for consistent reporting in both observational cohort studies and therapeutic clinical trials. METHODS: A working group of experts in virology, transplant infectious disease, and HCT was assembled to develop HAdV infection and disease definitions with the degree of certainty (i.e., possible, probable, and proven). Definitions were further refined through an iterative process and independently applied by two central review committees (CRCs) to 20 pediatric allo-HCT recipients with at least one HAdV-positive PCR. RESULTS: Initial HAdV infection and disease definitions were developed and updated through an iterative process after reviewing clinical and virological details for 81 subjects with at least one positive HAdV PCR detected in a clinical specimen. Independent application of final definitions to 20 HAdV positive allo-HCT recipients by two CRCs yielded similar number of HAdV infection or disease events but with variation of degree of certainty for some events. CONCLUSIONS: Application of definitions by a CRC for a study of HAdV infection and disease is feasible and can provide consistency in the assignment of outcomes. Definitions need further refinement to improve reproducibility and to provide guidance on determining clinical improvement or worsening after initial diagnosis of HAdV infection or disease.


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , Hematopoietic Stem Cell Transplantation , Child , Humans , Adenovirus Infections, Human/diagnosis , Reproducibility of Results , Transplantation, Homologous , Cohort Studies
11.
J Leukoc Biol ; 115(6): 996-998, 2024 05 29.
Article in English | MEDLINE | ID: mdl-38527802

ABSTRACT

Glycosylated RNA molecules that can be bound by lectins have been demonstrated on the surfaces of leukocytes, but their physiologic function(s) was not known. A recent study (PMID 38262409) demonstrates that at least 1 function is to promote capture and rolling of neutrophils in the vasculature. Of interest, the neutrophil glycosylated RNA molecules bind to P-selectin but not E-selectin.


Subject(s)
Neutrophils , Humans , Neutrophils/metabolism , Animals , Glycosylation , Leukocyte Rolling , RNA/metabolism , E-Selectin/metabolism , P-Selectin/metabolism , Cell Membrane/metabolism
12.
Am J Pathol ; 194(5): 628-636, 2024 05.
Article in English | MEDLINE | ID: mdl-38309429

ABSTRACT

Neutrophils are an important cell type often considered the body's first responders to inflammatory insult or damage. They are recruited to the tissue of the lungs in patients with inflammatory airspace diseases and have unique and complex functions that range from helpful to harmful. The uniqueness of these functions is due to the heterogeneity of the inflammatory cascade and retention in the vasculature. Neutrophils are known to marginate, or remain stagnant, in the lungs even in nondisease conditions. This review discusses the ways in which the recruitment, presence, and function of neutrophils in the airspace of the lungs are unique from those of other tissues, and the complex effects of neutrophils on pathogenesis. Inflammatory mediators produced by neutrophils, such as neutrophil elastase, proresolving mediators, and neutrophil extracellular traps, dramatically affect the outcomes of patients with disease of the lungs.


Subject(s)
Extracellular Traps , Neutrophils , Humans , Neutrophil Infiltration , Neutrophils/metabolism , Lung , Extracellular Traps/metabolism
13.
Pediatrics ; 153(3)2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38332740

ABSTRACT

OBJECTIVES: Remdesivir decreases the risk of SARS-CoV-2 infection progressing to severe disease in adults. This study evaluated remdesivir safety and pharmacokinetics in infants and children. METHODS: This was a phase 2/3, open-label trial in children aged 28 days to 17 years hospitalized for polymerase chain reaction-confirmed SARS-CoV-2 infection. Participants received for ≤10 days once-daily intravenous remdesivir doses defined using physiologically based pharmacokinetic modeling (for ≥40 kg, 200 mg day 1, then 100 mg/day; for age ≥28 days and ≥3 to <40 kg, 5 mg/kg day 1, then 2.5 mg/kg/day). Sparse pharmacokinetic samples were analyzed using population-pharmacokinetic approaches for remdesivir and metabolites GS-704277 and GS-441524. RESULTS: Among 53 participants, at enrollment the median (Q1, Q3) number of days of COVID-19 symptoms was 5 (3, 7) and hospitalization was 1 (1, 3). Underlying conditions included obesity in 19 (37%), asthma in 11 (21%), and cardiac disorders in 11 (21%). Median duration of remdesivir treatment was 5 days (range, 1-10). Remdesivir treatment had no new apparent safety trends. Two participants discontinued treatment because of adverse events including elevated transaminases; both had elevated transaminases at baseline. Three deaths occurred during treatment (and 1 after). When compared with phase 3 adult data, estimated mean pediatric parameters (area under the concentration-time curve over 1 dosing interval, AUCτ, Cmax, and Cτ) were largely overlapping but modestly increased (remdesivir, 33%-129%; GS-704277, 37%-124%; GS-441524, 0%-60%). Recovery occurred for 62% of participants on day 10 and 83% at last assessment. CONCLUSIONS: In infants and children with COVID-19, the doses of remdesivir evaluated provided drug exposure similar to adult dosing. In this study with a small sample size, no new safety concerns were observed.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , COVID-19 , Child, Hospitalized , Adult , Infant , Humans , Child , COVID-19 Drug Treatment , SARS-CoV-2 , Pyrroles , Transaminases
14.
Neuro Oncol ; 26(6): 1052-1066, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38271182

ABSTRACT

BACKGROUND: Compared to minimally invasive brain metastases (MI BrM), highly invasive (HI) lesions form abundant contacts with cells in the peritumoral brain parenchyma and are associated with poor prognosis. Reactive astrocytes (RAs) labeled by phosphorylated STAT3 (pSTAT3) have recently emerged as a promising therapeutic target for BrM. Here, we explore whether the BrM invasion pattern is influenced by pSTAT3+ RAs and may serve as a predictive biomarker for STAT3 inhibition. METHODS: We used immunohistochemistry to identify pSTAT3+ RAs in HI and MI human and patient-derived xenograft (PDX) BrM. Using PDX, syngeneic, and transgenic mouse models of HI and MI BrM, we assessed how pharmacological STAT3 inhibition or RA-specific STAT3 genetic ablation affected BrM growth in vivo. Cancer cell invasion was modeled in vitro using a brain slice-tumor co-culture assay. We performed single-cell RNA sequencing of human BrM and adjacent brain tissue. RESULTS: RAs expressing pSTAT3 are situated at the brain-tumor interface and drive BrM invasive growth. HI BrM invasion pattern was associated with delayed growth in the context of STAT3 inhibition or genetic ablation. We demonstrate that pSTAT3+ RAs secrete Chitinase 3-like-1 (CHI3L1), which is a known STAT3 transcriptional target. Furthermore, single-cell RNA sequencing identified CHI3L1-expressing RAs in human HI BrM. STAT3 activation, or recombinant CHI3L1 alone, induced cancer cell invasion into the brain parenchyma using a brain slice-tumor plug co-culture assay. CONCLUSIONS: Together, these data reveal that pSTAT3+ RA-derived CHI3L1 is associated with BrM invasion, implicating STAT3 and CHI3L1 as clinically relevant therapeutic targets for the treatment of HI BrM.


Subject(s)
Astrocytes , Brain Neoplasms , Chitinase-3-Like Protein 1 , Neoplasm Invasiveness , STAT3 Transcription Factor , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/genetics , Humans , Chitinase-3-Like Protein 1/metabolism , Chitinase-3-Like Protein 1/genetics , Animals , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Brain Neoplasms/secondary , Brain Neoplasms/genetics , Astrocytes/metabolism , Astrocytes/pathology , Mice , Mice, Transgenic , Cell Proliferation , Xenograft Model Antitumor Assays , Tumor Cells, Cultured
15.
J Pediatric Infect Dis Soc ; 13(2): 144-147, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38219024

ABSTRACT

To characterize nirsevimab in the prevention of RSV, children from the Phase 3 MELODY trial were followed through their second RSV season. No increase in medically attended RSV lower respiratory tract infections or evidence of antibody-dependent enhancement of infection or disease severity was found for nirsevimab vs placebo recipients. Clinical Trial Registration: Clinicaltrials.gov, NCT03979313, https://clinicaltrials.gov/ct2/show/NCT03979313.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Child , Humans , Infant , Antibodies, Monoclonal, Humanized/therapeutic use , Respiratory Syncytial Virus Infections/drug therapy , Respiratory Syncytial Virus Infections/prevention & control , Respiratory Tract Infections/drug therapy , Respiratory Tract Infections/prevention & control , Seasons
16.
PLoS One ; 19(1): e0290837, 2024.
Article in English | MEDLINE | ID: mdl-38236941

ABSTRACT

The Ubiquitin Specific Peptidase 22 (USP22), a component of the Spt-Ada-Gcn5 Acetyltransferase (SAGA) histone modifying complex, is overexpressed in multiple human cancers, but how USP22 impacts tumorigenesis is not clear. We reported previously that Usp22 loss in mice impacts execution of several signaling pathways driven by growth factor receptors such as erythroblastic oncogene B b2 (ERBB2). To determine whether changes in USP22 expression affects ERBB2-driven tumorigenesis, we introduced conditional overexpression or deletion alleles of Usp22 into mice bearing the Mouse mammary tumor virus-Neu-Ires-Cre (MMTV-NIC) transgene, which drives both rat ERBB2/NEU expression and Cre recombinase activity from the MMTV promoter resulting in mammary tumor formation. We found that USP22 overexpression in mammary glands did not further enhance primary tumorigenesis in MMTV-NIC female mice, but increased lung metastases were observed. However, deletion of Usp22 significantly decreased tumor burden and increased survival of MMTV-NIC mice. These effects were associated with markedly decreased levels of both Erbb2 mRNA and protein, indicating Usp22 loss impacts MMTV promoter activity. Usp22 loss had no impact on ERBB2 expression in other settings, including MCF10A cells bearing a Cytomegalovirus (CMV)-driven ERBB2 transgene or in human epidermal growth factor receptor 2 (HER2)+ human SKBR3 and HCC1953 cells. Decreased activity of the MMTV promoter in MMTV-NIC mice correlated with decreased expression of known regulatory factors, including the glucocorticoid receptor (GR), the progesterone receptor (PR), and the chromatin remodeling factor Brahma-related gene-1 (BRG1). Together our findings indicate that increased expression of USP22 does not augment the activity of an activated ERBB2/NEU transgene but impacts of Usp22 loss on tumorigenesis cannot be assessed in this model due to unexpected effects on MMTV-driven Erbb2/Neu expression.


Subject(s)
Mammary Neoplasms, Experimental , Mice , Rats , Female , Humans , Animals , Mice, Transgenic , Mammary Neoplasms, Experimental/pathology , Mammary Tumor Virus, Mouse/genetics , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Cell Transformation, Neoplastic/genetics , Carcinogenesis/genetics , Ubiquitin Thiolesterase/genetics
17.
J Clin Invest ; 134(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38015629

ABSTRACT

Vascular aging affects multiple organ systems, including the brain, where it can lead to vascular dementia. However, a concrete understanding of how aging specifically affects the brain vasculature, along with molecular readouts, remains vastly incomplete. Here, we demonstrate that aging is associated with a marked decline in Notch3 signaling in both murine and human brain vessels. To clarify the consequences of Notch3 loss in the brain vasculature, we used single-cell transcriptomics and found that Notch3 inactivation alters regulation of calcium and contractile function and promotes a notable increase in extracellular matrix. These alterations adversely impact vascular reactivity, manifesting as dilation, tortuosity, microaneurysms, and decreased cerebral blood flow, as observed by MRI. Combined, these vascular impairments hinder glymphatic flow and result in buildup of glycosaminoglycans within the brain parenchyma. Remarkably, this phenomenon mirrors a key pathological feature found in brains of patients with CADASIL, a hereditary vascular dementia associated with NOTCH3 missense mutations. Additionally, single-cell RNA sequencing of the neuronal compartment in aging Notch3-null mice unveiled patterns reminiscent of those observed in neurodegenerative diseases. These findings offer direct evidence that age-related NOTCH3 deficiencies trigger a progressive decline in vascular function, subsequently affecting glymphatic flow and culminating in neurodegeneration.


Subject(s)
Brain , Dementia, Vascular , Receptor, Notch3 , Animals , Humans , Mice , Brain/metabolism , CADASIL/genetics , CADASIL/pathology , Dementia, Vascular/metabolism , Mice, Knockout , Mutation , Receptor, Notch3/genetics
18.
Clin Trials ; 21(3): 390-396, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38140914

ABSTRACT

BACKGROUND/AIMS: The SARS-CoV-2 pandemic disproportionately impacted communities with lower access to health care in the United States, particularly before vaccines were widely available. These same communities are often underrepresented in clinical trials. Efforts to ensure equitable enrollment of participants in trials related to treatment and prevention of Covid-19 can raise concerns about exploitation if communities with lower access to health care are targeted for recruitment. METHODS: To enhance equity while avoiding exploitation, our site developed and implemented a three-part recruitment strategy for pediatric Covid-19 vaccine studies. First, we publicized a registry for potentially interested participants. Next, we applied public health community and social vulnerability indices to categorize the residence of families who had signed up for the registry into three levels to reflect the relative impact of the pandemic on their community: high, medium, and low. Finally, we preferentially offered study participation to interested families living in areas categorized by these indices as having high impact of the Covid-19 pandemic on their community. RESULTS: This approach allowed us to meet goals for study recruitment based on public health metrics related to disease burden, which contributed to a racially diverse study population that mirrored the surrounding community demographics. While this three-part recruitment strategy improved representation of minoritized groups from areas heavily impacted by the Covid-19 pandemic, important limitations were identified that would benefit from further study. CONCLUSION: Future use of this approach to enhance equitable access to research while avoiding exploitation should test different methods to build trust and communicate with underserved communities more effectively.


Subject(s)
COVID-19 Vaccines , COVID-19 , Health Services Accessibility , Patient Selection , Humans , COVID-19 Vaccines/therapeutic use , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/supply & distribution , COVID-19/prevention & control , Patient Selection/ethics , Child , United States , Pilot Projects , Clinical Trials as Topic/ethics , SARS-CoV-2 , Registries , Pandemics , Female
19.
J Pediatr Pharmacol Ther ; 28(8): 693-703, 2023.
Article in English | MEDLINE | ID: mdl-38094673

ABSTRACT

OBJECTIVE: Characterize levetiracetam pharmacokinetics (PK) in children with obesity to inform dosing. METHODS: Children 2 to <21 years old receiving standard of care oral levetiracetam across two opportunistic studies provided blood samples. Levetiracetam plasma PK data were analyzed with a nonlinear mixed-effects modeling approach. Indirect measures for body size and covariates were tested for model inclusion. Individual empirical Bayesian estimates using the final model parameters were compared by obesity status. Monte Carlo simulation using total body weight was performed in children with normal estimated glomerular filtration rate to identify dosing for children with obesity that resulted in comparable exposures to normal weight adults and children after receiving label dosing. RESULTS: The population PK model was developed from 341 plasma concentrations from 169 children. A 1-compartment model best fit the data with fat-free mass as a significant covariate. Compared with children with normal weight, children with obesity had significantly lower body weight-normalized clearance (median [range], 4.77 [1.49-10.44] and 3.71 [0.86-13.55] L/h/70 kg, respectively). After label dosing with the oral formulation in children with obesity 4 to <16 years old, maximum and minimum steady-state concentrations were higher (25% and 41%, respectively [oral solution] and 27% and 19%, respectively [tablet]) compared with children with normal weight. Comparable exposures between children with and without obesity were achieved with weight-tiered dosing regimens of <75 kg or ≥75 kg. CONCLUSIONS: Weight-tiered dosing for levetiracetam oral solution and tablets for children with obesity 4 to <16 years old results in more comparable exposures to children of normal weight.

20.
Immunity ; 56(12): 2755-2772.e8, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38039967

ABSTRACT

In triple-negative breast cancer (TNBC), stromal restriction of CD8+ T cells associates with poor clinical outcomes and lack of responsiveness to immune-checkpoint blockade (ICB). To identify mediators of T cell stromal restriction, we profiled murine breast tumors lacking the transcription factor Stat3, which is commonly hyperactive in breast cancers and promotes an immunosuppressive tumor microenvironment. Expression of the cytokine Chi3l1 was decreased in Stat3-/- tumors. CHI3L1 expression was elevated in human TNBCs and other solid tumors exhibiting T cell stromal restriction. Chi3l1 ablation in the polyoma virus middle T (PyMT) breast cancer model generated an anti-tumor immune response and delayed mammary tumor onset. These effects were associated with increased T cell tumor infiltration and improved response to ICB. Mechanistically, Chi3l1 promoted neutrophil recruitment and neutrophil extracellular trap formation, which blocked T cell infiltration. Our findings provide insight into the mechanism underlying stromal restriction of CD8+ T cells and suggest that targeting Chi3l1 may promote anti-tumor immunity in various tumor types.


Subject(s)
Extracellular Traps , Triple Negative Breast Neoplasms , Animals , Humans , Mice , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Cytokines , Extracellular Traps/metabolism , Triple Negative Breast Neoplasms/metabolism , Triple Negative Breast Neoplasms/pathology , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL