Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microorganisms ; 10(6)2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35744697

ABSTRACT

Cellular autofluorescence is usually considered to be a negative phenomenon because it can affect the sensitivity of fluorescence microscopic or flow cytometric assays by interfering with the signal of various fluorescent probes. Nevertheless, in our work, we adopted a different approach, and green autofluorescence induced by flavins was used as a tool to monitor fermentation employing the bacterium Cupriavidus necator. The autofluorescence was used to distinguish microbial cells from abiotic particles in flow cytometry assays, and it was also used for the determination of viability or metabolic characteristics of the microbial cells. The analyses using two complementary techniques, namely fluorescence microscopy and flow cytometry, are simple and do not require labor sample preparation. Flavins and their autofluorescence can also be used in a combination with other fluorophores when the need for multi-parametrical analyses arises, but it is wise to use dyes that do not emit a green light in order to not interfere with flavins' emission band (500-550 nm).

2.
Bioresour Technol ; 256: 552-556, 2018 May.
Article in English | MEDLINE | ID: mdl-29478784

ABSTRACT

This work explores molecular, morphological as well as biotechnological features of the highly promising polyhydroxyalkanoates (PHA) producer Halomonas halophila. Unlike many other halophiles, this bacterium does not require expensive complex media components and it is capable to accumulate high intracellular poly(3-hydroxybutyrate) (PHB) fractions up to 82% of cell dry mass. Most remarkably, regulating the concentration of NaCl apart from PHB yields influences also the polymer's molecular mass and polydispersity. The bacterium metabolizes various carbohydrates including sugars predominant in lignocelluloses and other inexpensive substrates. Therefore, the bacterium was employed for PHB production on hydrolysates of cheese whey, spent coffee grounds, sawdust and corn stover, which were hydrolyzed by HCl; required salinity of cultivation media was set up during neutralization by NaOH. The bacterium was capable to use all the tested hydrolysates as well as sugar beet molasses for PHB biosynthesis, indicating its potential for industrial PHB production.


Subject(s)
Halomonas , Hydroxybutyrates , Polyesters , 3-Hydroxybutyric Acid
3.
Appl Microbiol Biotechnol ; 102(4): 1923-1931, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29349494

ABSTRACT

Numerous prokaryotes accumulate polyhydroxyalkanoates (PHA) in the form of intracellular granules. The primary function of PHA is the storage of carbon and energy. Nevertheless, there are numerous reports that the presence of PHA granules in microbial cells enhances their stress resistance and fitness when exposed to various stress factors. In this work, we studied the protective mechanism of PHA granules against UV irradiation employing Cupriavidus necator as a model bacterial strain. The PHA-accumulating wild type strain showed substantially higher UV radiation resistance than the PHA non-accumulating mutant. Furthermore, the differences in UV-Vis radiation interactions with both cell types were studied using various spectroscopic approaches (turbidimetry, absorption spectroscopy, and nephelometry). Our results clearly demonstrate that intracellular PHA granules efficiently scatter UV radiation, which provides a substantial UV-protective effect for bacterial cells and, moreover, decreases the intracellular level of reactive oxygen species in UV-challenged cells. The protective properties of the PHA granules are enhanced by the fact that granules specifically bind to DNA, which in turn provides shield-like protection of DNA as the most UV-sensitive molecule. To conclude, the UV-protective action of PHA granules adds considerable value to their primary storage function, which can be beneficial in numerous environments.


Subject(s)
Cupriavidus necator/metabolism , Cupriavidus necator/radiation effects , Polyhydroxyalkanoates/metabolism , Ultraviolet Rays , Cupriavidus necator/chemistry , DNA, Bacterial/metabolism , DNA, Bacterial/radiation effects , Microbial Viability/radiation effects , Reactive Oxygen Species/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...